
ADVANCED FEATURES

Twixl media • help.twixlmedia.com • info@twixlmedia.com • Copyright © 2021 Twixl media. All Rights Reserved

Table of Contents
Designing ... 3

Accessibility Features in Twixl apps ...4

Using custom URL Schemes in your app ..6

Custom URL Schemes: Advanced Mailto hyperlinks ...17

Custom URL Schemes: How to use in HTML articles for the Browser Client 22

Online/offline content in In Design web viewers or web overlays ... 25

How to integrate a form, survey or shopping basket in a Twixl app27

Embedding a Twitter feed in HTML ... 29

How to display video in a Browse Grid cell? ...31

Using custom thumbnails in the Table of Contents viewer ... 32

Resizing Web Content at 100% minus toolbar .. 34

Using the GPS and Google Maps in your Twixl app .. 36

Advanced Scripting ... 42

Advanced Scripting: Introduction ... 43

Advanced Scripting | Sample App 1: Login / Logout Button ...49

Advanced Scripting | Sample App 2: Different content for phone vs tablet vs
Browser Client ... 52

Advanced Scripting | Sample App 3: Using twxlog ... 57

Advanced Scripting | Sample App 4: Using JSON and XML ... 61

Advanced Scripting | Sample App 5: Using twxhttp ..64

Advanced Scripting | Sample App 6: Custom Vars ... 67

Advanced Scripting | Sample App 7: Multiple Languages ... 70

Advanced Scripting | Sample App 8: Privacy Policy .. 74

Extra's ... 78

Scripting the Twixl Publisher plug-in ... 79

Installing the Helper as a Windows Service ...84

How to pass a Custom Entitlements Server token to the Browser Client?86

Designing

Page 3Advanced features

Accessibility Features in Twixl apps

Both iOS and Android support a number of Accessibility features. Below is an
overview of what is supported in your Twixl apps (requires 15.3 or higher).

1. VoiceOver (iOS) & Talkback (Android)
From Apple's web site: "VoiceOver is a screen reader that interacts with objects in your
apps so users can drive the interface even if they can’t see it. Ensure that the user
interface elements in your apps are accessible and useful."

From the Android web site: "Fully interact with what’s on your screen through sound and
touch. Use TalkBack to hear everything from notifications to app names to how much
battery life you have left."

In your Twixl apps, nothing needs to be configured to support this. VoiceOver and
Talkback are supported for the following:

• Reading PDF articles
• Reading HTML articles
• User Interface elements (buttons, alerts, …)
• Text in browse grid cells
• The Settings screen
• The Paywall screen

NOTE: At this time, interactive InDesign content is not supported.

2. Dynamic Type (iOS) & Font size and display size
(Android)
With this feature, people can choose their preferred text size and the OS will switch fonts
automatically as needed.

In your Twixl apps, nothing needs to be configured to support this. Dynamic Type and
Font&Display size are supported for the following:

• Reading PDF articles
• Reading HTML articles
• User Interface elements (buttons, alerts, …)
• Text in browse grid cells
• The Settings screen
• The Paywall screen

Page 4Advanced features

https://developer.apple.com/accessibility/ios/
https://www.android.com/accessibility/

NOTE: At this time, interactive InDesign content is not supported.

3. How to use?
Accessibility features are activated on a device level. Therefore, nothing has to be
changed by the end-user in your app itself. Please refer to the Apple and Google help
pages on how to activate and use the accessibility features on iOS and Android devices.

 For more general information on mobile accessibility guidelines and tips, check
international initiatives as W3C.

Page 5Advanced features

https://support.apple.com/
https://support.google.com/
https://www.w3.org/WAI/standards-guidelines/mobile/

Using custom URL Schemes in your app

Custom URL schemes are a powerful way to control navigation from just about
anywhere in your app! This article provides a complete overview of what you can do
with the different URL schemes.

1. Navigating to a collection or article
From within your article content, you can use special URL schemes to link to a collection
or a particular article within a collection. These can also be used in InDesign content
using a Hyperlink, a Web viewer or a Web Overlay Button.

You can use the following scheme:

tp-collection://[target_collection_name]/[target_article_name]

The syntax is as follows:

tp-collection://[collection-name] Will link to the first article in a different
collection.

tp-collection://[collection-
name]/[article-name]

Will link to a specific article in a different
collection.

tp-collection://hamburger-menu Will open the Hamburger Menu (provided
the Hamburger Menu is enabled).

tp-collection://parent
Will link to the parent collection of your
current article (currently not supported in
the Browser Client).

tp-collection://root Will link to the root collection of your app.

2. Navigating to an article or page
The links below can also be used in your InDesign content, in a hyperlink, a web viewer or
a web overlay. It can be used to go to another article in the same collection.

Page 6Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115000739225-hyperlinks
https://twixlmedia.zendesk.com/hc/en-us/articles/115000739445-web-viewers
https://twixlmedia.zendesk.com/hc/en-us/articles/115000779769-web-overlay-buttons
https://twixlmedia.zendesk.com/hc/en-us/articles/115003891225-hamburger-menu
https://twixlmedia.zendesk.com/hc/en-us/articles/360000551909-browser-client

tp-pagelink://[article_name]

If you want to add a link to a particular page in an article in the same collection from
within a browse page or article, you can do so creating an HREF like the one below:

tp-pagelink://[article_name]/[page_number]

An HTML example would be:

For InDesign content the article name needs to be the name of the InDesign file. So, in
case of the example above, the name of the InDesign document would be TOC.indd.

A number of other URL schemes for relative article and page navigation are also
available:

tp-next-article:// Go to the next article.

tp-previous-article:// Go to the previous article.

tp-first-article:// Go to the first article of the publication.

tp-last-article:// Go to the last article of the publication.

tp-next-page:// Go to the next page.

tp-previous-page:// Go to the previous page.

tp-first-page:// Go to the first page of an article.

tp-last-page:// Go to the last page of an article.

tp-article-top:// Go to the top of a long-page article.

Page 7Advanced features

tp-article-bottom:// Go to the end of a long-page article.

3. Show/hide the toolbar (for InDesign content)
(Available in an InDesign Hyperlink, a Web viewer or a Web Overlay Button)

tp-toolbar://hide
Hides the toolbar with the Table of
Contents icon, and optional sharing and
bookmarking icons.

tp-toolbar://show
Displays the toolbar with the Table of
Contents icon, and optional sharing and
bookmarking icons.

tp-toolbar://toggle Toggles the current view, whether visible
or invisible.

4. Show Table of Contents (for InDesign content)
(Available in an InDesign Hyperlink, a Web viewer or a Web Overlay Button)

tp-toc://

When the tp-toc:// url is triggered, it will show the Table of Contents dropdown.

5. Downloads overview
(Can be used in e.g. an InDesign hyperlink, a Web Link content item, or an HTML article.)

tp-downloads://

If you have an app where (some or all) collections are marked as Monolithic Download,
this URL scheme will trigger the display of an overview of the collections that have been
downloaded.

Page 8Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115000739225-hyperlinks
https://twixlmedia.zendesk.com/hc/en-us/articles/115000739445-web-viewers
https://twixlmedia.zendesk.com/hc/en-us/articles/115000779769-web-overlay-buttons
https://twixlmedia.zendesk.com/hc/en-us/articles/115000739225-hyperlinks
https://twixlmedia.zendesk.com/hc/en-us/articles/115000739445-web-viewers
https://twixlmedia.zendesk.com/hc/en-us/articles/115000779769-web-overlay-buttons

5.1. Watch a short 'How to' video…

• The grid & item styles that are used for this collection are defined in your app settings
under 'Search / Downloads' (the same styles are used for both the Downloads
collection and the Search results).

• Sorting is done by most recent publish date.

Users can also manage the content that has been downloaded: long-pressing the
collection icon of the collection brings up a dialog that allows the user to delete the
downloaded content. It can always be re-downloaded later.

6. Library overview
The Library feature allows the publisher to include a section where all the free collections
for an app user are displayed, i.e. the free, the purchased and the entitled collections.
This feature can be used in e.g. an InDesign hyperlink, a Weblink content item or an HTML
article.

Page 9Advanced features

tp-library://

• The grid & item styles that are used for this collection are defined in your app settings
under 'Search / Downloads' (the same styles are used for both the Downloads
collection and the Search results).

• Sorting is done by most recent publish date.

The Library-feature differs from the Downloads feature as tp-library doesn't show all the
offline available (=downloaded) collections. It only shows the for a user freely available
collections and this difference should be considered before implementing this feature.

7. Searching
(Can be used in e.g. an InDesign hyperlink, a Web Link content item, or an HTML article.)

To trigger the search-dialog in your app, you use the following url scheme:

Custom URL Scheme Function

tp-search:// Shows an empty dialog

tp-search://[keyword] Executes a search-command with the
specified keyword

Example (search for content with the word twixl):

tp-search://twixl

• The grid & item styles that are used for the search result are defined in your app
settings under 'Search / Downloads' (the same styles are used for both the Downloads
collection and the Search results - see above).

Page 10Advanced features

8. Paywall & subscriptions

tp-paywall://

Enables you to trigger the paywall, showing both purchases and different subscriptions
that you have defined.

tp-subscriptions://

Lets you trigger the paywall, showing only the different subscriptions you have defined.

tp-restore-purchases://

Lets you trigger the 'Restore purchases' functionality.

9. Entitlements

Show the Entitlements sign-in form

tp-entitlements-signin://

Triggers the entitlements sign-in form.

Show the Entitlements register form

tp-entitlements-register://

Triggers the entitlements register form. This only works if the entitlements server provides
a "register" action. Available in the kiosk info cell - infoCell.html

Get entitlement token

tp-entitlements-get-token://<callback_function>

Get the current entitlement token, passing it as the argument to the
callback_function . If no callback function is specified, it will default to
twixlKioskOnGetEntitlementToken .

Page 11Advanced features

Clear entitlement token

tp-entitlements-clear-token://

Clears the entitlements token (can be used for testing purposes).

10. Sending e-mail
Please refer to the article Advanced Mailto hyperlinks to learn how to use the mailto:
URL scheme, to send e-mail from your app.

11. Making a phone call

callto:[number] or tel:[number]

Allows you to trigger a phone call.

Example:

callto:+32493252577

tel:+32493252577

12. Sharing on social media
To trigger the sharing sheet, you use the following url-scheme:

tp-share://

13. Going back in Browsing History
This special url scheme can be used in to go back in the browsing history in an app. The
syntax is as follows:

tp-history-back://

A history will be saved when going though the different content items. This means that if
you are in Article1 and you scroll to Article2, if you then press the custom URL tp-history-
back:// it will go back to Article1.

Page 12Advanced features

The history will be saved when:

• Scrolling horizontally to other content items.
• Scrolling horizontally/vertically to pages of the same content item.
• Going to another content item or collection with a custom url (tp-pagelink://article2,

tp-next-article, tp-collection://collection2...)
• Going to different pages in the same content item with a custom url (tp-next-page://,

tp-last-page://, tp-first-page://...)

14. Going back in Navigation History
This special url scheme can be used in all the same places as tp-collection links and
goes back in the navigation stack for a specific number of steps. The syntax is as follows:

tp-navigate-up://[number-of-steps]

The number-of-steps indicates how many steps you want to go back.

Example:

Application XYZ has the following structure:

• Root Collection (browse mode)
• Languages Collection (browse mode)

• English Collection (browse mode)
• English Document 1 (detail mode)

Some specific uses and what the result will be (in this case):

• English document 1: tp-navigate-up://1 takes you to the English Collection.
• English document 1: tp-navigate-up://2 takes you to the Languages Collection.
• English document 1: tp-navigate-up://3 takes you to the Root Collection.
• English document 1: tp-navigate-up://200 also takes you to the Root Collection.

 IMPORTANT NOTE:

tp-navigate-up:// is supported only on iOS and Android. It cannot be used in
the browser client.

15. Launching an app
It is possible to trigger launching an app from within a Twixl app using the following
scheme:

Page 13Advanced features

tp-pagelink://article2
tp-collection://collection2

Please note that the implementation is slightly different on iOS vs Android.

• iOS: the URL scheme is the same as the application identifier:

e.g. if the app identifier is com.twixlmedia.myapp -> then the URL to launch the app
would be: com.twixlmedia.myapp://

• Android: the URL scheme is the same as the app identifier without the dots, dashes,
underscores and all lowercase:

e.g. if the app identifier is com.twixlmedia.myapp -> the the URL to launch the app
would be: comtwixlmediamyapp://

 IMPORTANT NOTE:

This will only work if the app is already installed on the device.

16. Registering a test device for push notifications
tp-register-test-device://

Triggering this custom URL scheme will add the current device to the list of test devices
for push notifications. Note that once push notifications for your app has been
configured, you'll need to create a new build of your app before you can use this URL
scheme. More details here.

17. Launching third-party apps
In this scenario, it depends on the url schemes supported by the app you want to launch.
E.g. an app which can be opened using the url scheme com.mycustomapp:// can be
launched by simply creating a hyperlink as follows:

Launch My Custom App

 IMPORTANT NOTE:

This will only work if the app has already been installed on the device.

Page 14Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/360000625858-sending-push-notifications

18. Opening a hyperlink in the device browser

tp-open-in-device-browser=1

Although in most cases, you want to keep readers in the embedded browser, sometimes
you may want to open a link directly in Safari on iPad or in the default browser on
Android. A good use case for this is if you want to link to a PDF that you want readers to
be able to download.

You can do this by adding this extra parameter to your URL. Available for Hyperlinks.

Some examples:

The URLs below will open in the embedded app browser:

http://www.website.com/file.pdf?id=1

http://www.website.com/file2.pdf

And these will open in the device browser:

http://www.website.com/file.pdf?id=1&tp-open-in-device-browser=1

http://www.website.com/file2.pdf?tp-open-in-device-browser=1

19. Open in embedded web browser

tp-open-in-web-browser=1

Adding this url parameter to a hyperlink will open the link in the embedded web browser
instead of opening inline.

20. Get the device info via JavaScript
Adding the following JavaScript code to your Content Item, Web Viewer, Web Overlay
Button, ...

window.location.href = "tp-device-info://";

will execute the following JavaScript function:

Page 15Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115000739225-hyperlinks
https://twixlmedia.zendesk.com/hc/en-us/articles/115000739445-web-viewers
https://twixlmedia.zendesk.com/hc/en-us/articles/115000779769-web-overlay-buttons
https://twixlmedia.zendesk.com/hc/en-us/articles/115000779769-web-overlay-buttons

function twixlOnGetDeviceInfo(deviceUDID, appVersion, appIdentifier, entitlementToken) {
}

This then gives you access to the Device UDID, the app version, the app identifier and the
entitlement token. You can also customize the name of the function that gets called:

window.location.href = "tp-device-info://myCustomFunctionName";
function myCustomFunctionName(deviceUDID, appVersion, appIdentifier, entitlementToken) {
}

 SAMPLE FILES:

For more info, see the sample files on this GitHub-page.

21. Custom Variables
Custom variables allow you to set or get one or more variables with the following
properties:

• They are saved on the device
• They can be re-used in advanced scripting

A sample scenario is e.g. to store a user preference and change the content based on
that variable.

tp-set-custom-vars://

tp-get-custom-vars://

Example:

tp-set-custom-vars://?name=&product=

 MORE INFO ABOUT CUSTOM VARS:

Custom Variables rely on Advanced Scripting. For more info about Advanced
Scripting and an example, see:

• Advanced Scripting: Introduction
• Advanced Scripting | Sample App 6: Custom Vars

Page 16Advanced features

https://github.com/twixlmedia/examples-device-info

Custom URL Schemes: Advanced Mailto
hyperlinks

Using Hyperlinks in Twixl InDesign articles, you can launch the reader's mail client and
create a new mail message. This article explains how to use the mailto: syntax (so
you can prefill some fields for your reader) and tackles some difficulties for Android
devices.

 WARNING:

It appears iOS 14.6 introduced a new behaviour where support for rich content in
mailto URLs has been removed, because of potential security issues. Please take
this into account when trying to use mailto hyperlinks in your Twixl app.

 TIP:

For more general info about using Hyperlinks in InDesign, check this article:
Hyperlinks

1. General Example

1.1. What?

Let's say you want to achieve the following result: A clickable hyperlink that will prepare a
new email for your reader with a pre-defined addressee, subject and body.

Page 17Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115000739225-hyperlinks

Field Value

To: to@email.com

CC: cc@email.com

BCC: bcc@email.com

Subject: This is the Subject.

Body: This is the Body.

1.2. Syntax

The syntax for this example is as follows:

mailto:to@email.com?cc=cc@email.com&bcc=bcc@email.com&subject=This%20is%20my%20Subject.&
body=This%20is%20my%20Body.

Syntax Description

mailto:to@email.com This is the startpoint, it opens the reader's
mail-client with a new empty mail and

Page 18Advanced features

Syntax Description

the To: Field prefilled with the address
to@email.com

?cc=cc@email.com

This syntax tells that you want to add an
option to this url. In this case you want
the CC: Field prefilled with the address
cc@email.com . Extra options after the

first option needs to be added with & as
a prefix. The first option after mailto
always needs the prefix ? . The
following options can also be added:

&bcc=bcc@email.com Option to prefill the BCC: Field.

&subject=This%20is%%20my%20Subject. Option to prefill the Subject: Field. Don’t
forget to replace each space by %20 .

&body=This%20is%20my%20Body. Option to prefill the Body: Field. Don’t
forget to replace each space by %20 .

2. Example with a url in the predefined body.

Adding a url to the body can be tricky. If you do this with the standard syntax, it will
not work on Android devices.

Page 19Advanced features

2.1. What?

Field Value

To: to@email.com

CC:

BCC:

Subject: A Body with a url.

Body: https://www.twixlmedia.com

2.2. Syntax

The correct syntax for this example is as follows:

mailto:to@email.com?subject=A%20Body%20with%20a%20url.&body=https%3A%2F%2Fwww.
twixlmedia.com

So, the tricky part is the url. You can't use a standard url like
https://www.twixlmedia.com . You will need to encode that url first. You can encode a

url by using one of these free online tools:

Page 20Advanced features

• https://meyerweb.com/eric/tools/dencoder/
• https://www.urlencoder.org
• http://www.url-encode-decode.com

The result for https://www.twixlmedia.com will be
https%3A%2F%2Fwww.twixlmedia.com . It's this encoded url that you need to embed in

the syntax of your mailto: url.

 REMEMBER:

Always test your setup before you publish! More info about Preview on device
can be found here.

Page 21Advanced features

https://meyerweb.com/eric/tools/dencoder/
https://www.urlencoder.org/
http://www.url-encode-decode.com/
https://twixlmedia.zendesk.com/hc/en-us/articles/115000739325-preview-indesign-content-in-the-simulator-or-on-a-device

Custom URL Schemes: How to use in HTML
articles for the Browser Client

We support the vast majority of Custom URL Schemes for apps in the Browser client,
but you'll need to make changes to your code if you want them to work for the
Browser Client. This article shows you how to.

Suppose you have this basic HTML-article:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta http-equiv="X-UA-Compatible" content="ie=edge">
 <title>Browser Client Test</title>
</head>
<body>

 <h1 id="title">show collection</h1>

 <script>

 function isBrowserClient() {
 try {
 if (window.name.slice(0, 4) == "twx-") {
 return true;
 } else if (window.location.hostname.indexOf("twixlmedia.com") > 0) {
 return true;
 }
 } catch (exception) {
 return false;
 }
 }

 function goToURL(url) {
 if (isBrowserClient()) {
 twxHandleURL(url);
 } else {
 window.location.href = url;
 }
 }

Page 22Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/360000551909-browser-client

 var title = document.getElementById("title");
 title.addEventListener('click', function() {
 goToURL("tp-collection://hidden-collection");
 });

 </script>

</body>
</html>

When you want to support the Custom URL Schemes in a HTML document, you will need
to use JavaScript to load the URL. We've made two extra functions in the sample below to
help with this:

function isBrowserClient() {
 try {
 if (window.name.slice(0, 4) == "twx-") {
 return true;
 } else if (window.location.hostname.indexOf("twixlmedia.com") > 0) {
 return true;
 }
 } catch (exception) {
 return false;
 }
}

This function checks if the HTML is loaded via the Browser Client or if it's loaded in a
mobile app.

function goToURL(url) {
 if (isBrowserClient()) {
 twxHandleURL(url);
 } else {
 window.location.href = url;
 }
}

This function is a helper to make loading a URL work in both the mobile apps and in the
browser client. If it's the Browser Client, we need to use the function twxHandleURL
(which is always available in the browser client). If it's a mobile app, you can just
navigate to the new URL.

The last piece will depend on how you've constructed the HTML:

var title = document.getElementById("title");
title.addEventListener('click', function() {
 goToURL("tp-collection://hidden-collection");

Page 23Advanced features

});

In our example, we are using plain JavaScript to handle the click event on the title
element. When the user taps or clicks on the title element, it will navigate to the
Collection named hidden-collection .

Reminder: The Twixl Browser Client is a very easy, quick and cheap solution to have an
internet extension of your app so users can share your app content with others that
don't have your app or to simply view app content while using a computer. However,
the Twixl Browser Client does not replace fully designed websites nor has the same
specific functionalities as your app might have. In case you want all features on your
website, we recommend to use website builders.

Page 24Advanced features

Online/offline content in In Design web
viewers or web overlays

In a web viewer or web overlay, you can refer to a remote url or to a local
WebResource, depending on whether a user is online or not.

With a remote url, the user needs to be online in order to see the contents. With a local
WebResource, the contents is embedded in the InDesign article, so you don’t have to be
online in order to see the contents. Imagine you want to mix both options. As you never
know upfront if the user’s device is going to be online or not, you would like to have a
check that displays a remote URL if the device is online. And if the device is offline, it
would be nice if we could show a local WebResource instead. You will need to use some
JavaScript to accomplish this though.

The sample file contains a publication with 3 different articles:

• The first article shows a web viewer containing a link to a remote website.
• The second article shows a local WebResource which is embedded in the publication
• The third article is a smart article. It will check if the device is online, and if it is, it will

show a link to a remote web site. If the device is offline, it will show a local
WebResource which is embedded in the publication.

The way we’ve implemented it in the third article is by adding an extra file called
check.html in the WebResources folder for the publication. In that file, we’ve pasted the

following HTML code:

<html>

<head>
 <title>Check If The Device is Online or Not</title>
</head>

<body>

 <script type="text/javascript">
 if (navigator.onLine) {
 window.location.href = "http://blog.twixlmedia.com/assets/are-we-online/online.
html";
 } else {
 window.location.href = "offline.html";
 }
 </script>

</body>

Page 25Advanced features

</html>

Whenever the page gets loaded, it will execute the script. With the call to
navigator.onLine (case-sensitive), it will ask the web browser if there is an internet

connection. If there is an internet connection, it will redirect to the HTTP url, if not, it will
show the local WebResource. If you preview the sample publication on your device, load
it first with a network connection. On the third article, it will tell you that an online page
was loaded. If you then e.g. turn on Airplane mode in the system settings and open the
publication again, the third article will automatically load the offline file. This technique is
very handy if you have certain content that is only available online. Using this check, you
can show a proper message to the user indicating that he/she needs to be online to view
that content.

Download the sample files

Page 26Advanced features

https://services.twixlmedia.com/mika/support/zendesk/downloads/AreYouOnline.zip

How to integrate a form, survey or
shopping basket in a Twixl app

InDesign Web Viewers are a very powerful and sometimes underestimated feature
that allows you to add dynamic content in a Twixl publication. Any rectangle on an
InDesign page can become a source of HTML content. This is not limited to just
displaying a specific page of a web site, but can also be used to integrate things like
a form, a survey or even a shopping basket that can use localStorage.

In order to explain how this works, we created a Shopping basket example.

You can check out the result in the Twixl Viewer by tapping this link on your device (make
sure you have the Viewer Classic installed). If you open the Shopping Basket example in
the Twixl Viewer, there will be three pages in the publication:

• the first page shows 4 types of fruit, and tapping the "+" icon will add the item to the
shopping cart and display the overview of the basket

• the second page provides the same option, but is visualized a bit differently
• the third page shows an overview of the shopping cart, from where the order can be

confirmed

Page 27Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115000739445-web-viewers
http://diveintohtml5.info/storage.html
https://platform.twixlmedia.com/share/442229a98a4125f6ae903c659ad02c98
https://twixlmedia.zendesk.com/hc/en-us/articles/115002057809-downloads

How does this work?
The InDesign source publication can be downloaded here. The download consists of:

• an InDesign book called LocalStorageShoppingCart with three articles
• a WebResources folder with the HTML content

 MORE INFO:

1. In article 1, each of the 4 types of fruit has a Web Overlay button assigned to it that
triggers it to be added to the shopping cart.

2. In article 2, the same information is visualized differently using Web Viewers for
each of the fruit types, and will allow you to "Add one" to the basket and update
the information of the button on the fly.

3. Article 3 is the overview of the shopping basket, where a user can confirm the
order by entering his e-mail address.

The logic for all of this can be found in the contents of the WebResources folder,
in a document shopping_cart.html , along with some JavaScript files.

Page 28Advanced features

https://github.com/twixlmedia/examples-shopping-basket
https://twixlmedia.zendesk.com/hc/en-us/articles/115000779769-web-overlay-buttons
https://twixlmedia.zendesk.com/hc/en-us/articles/115000739445-web-viewers

Embedding a Twitter feed in HTML

When you want to embed content in a .html-article (e.g. a Twitter feed), you need to
make to circumvent the file: protocol. Let's explain what the problem is and how
to tackle that problem.

Don't!

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Twitter</title>
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <link href="css/normalize.css" rel="stylesheet" media="all">
 <link href="css/styles.css" rel="stylesheet" media="all">
</head>
<body>
 <div id="page">
 <div id="twitter-holder">
 <a class="twitter-timeline" data-lang="de" data-width="240" data-height="400" data-
dnt="true" href="URL-TO-YOUR-TWITTER-FEED">TITLE FOR YOUR NIFTY
TWITTER FEED
 </div>
 </div>
 <script src="//platform.twitter.com/widgets.js" charset="utf-8"></script>
</body>
</html>

The problem in this example is this piece of code: <script
src="//platform.twitter.com/widgets.js" charset="utf-8"></script>

In mobile apps, we load the pages using the file: protocol. This means it will try to
load the script as follows: <script src="file://platform.twitter.com/widgets.js"
charset="utf-8"></script> . That url of course doesn't exist and that's the reason why
you get an error.

Do!

<!DOCTYPE html>

Page 29Advanced features

<html>
<head>
 <meta charset="utf-8">
 <title>Twitter</title>
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <link href="css/normalize.css" rel="stylesheet" media="all">
 <link href="css/styles.css" rel="stylesheet" media="all">
</head>
<body>
 <div id="page">
 <div id="twitter-holder">
 <a class="twitter-timeline" data-lang="de" data-width="240" data-height="400" data-
dnt="true" href="https://twitter.com/spitexch?ref_src=twsrc%5Etfw"><span
id="console">Spitex Schweiz auf Twitter. Der Zugang zu diesen Inhalten setzt eine
aktive Internetverbindung voraus.
 </div>
 </div>
 <script src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>
</body>
</html>

The trick is to hardcode the src , so you force the mobile app to use the https protocol.
The nice thing about this, is that this hardcoding will work in your mobile apps, but also in
your Browser Client! So the end-result needs to be: <script
src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>

Page 30Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/360000551909-browser-client

How to display video in a Browse Grid cell?

If you want to display video inside a Browse Grid cell in article-based apps, read this
KB-article!

In short
Basically, you need to wrap a video inside a HTML document using either an Inline Web
Viewer or an Embedded Viewer and add an option to the <video> tag.

How to
1. Create a .html-file with a link to the video (example below).
2. Link to any video-source (e.g. Vimeo)
3. Add the playsinline option to the <video> tag. This disables the full screen on

phones and this way, the video will be played inside the Browse Grid Cell.
4. Create an Inline Web Viewer or an Embedded Web Viewer. See Working with content

items for more info.

Page 31Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115000718185-working-with-content-items
https://twixlmedia.zendesk.com/hc/en-us/articles/115000718185-working-with-content-items

Using custom thumbnails in the Table of
Contents viewer
When using web viewers, panorama VR or image sequences on a page, these will not be
rendered when the Twixl Publisher export creates the thumbnails that are used for the
Table of Contents (TOC) overview.

There is a way to customize the thumbnails that are being displayed though…

For InDesign-based content
1. The thumbnails that you want to customize need to be placed in the same folder as

the InDesign files for the article. If you use a publication-based workflow, it is best
practice to keep both the different articles and the publication (InDesign book) file
within the same folder.

2. The thumbnail files need to have the same name as the article, but with .jpg as the
extension instead of .indd, and have a size of 1024x1024 pixels (or a larger, preferably
square, size).

3. The retina thumbnails should add a suffix @2x to the file name, e.g.
ArticleName@2x.jpg , and have a size of 2048x2048 pixels (or a larger, preferably

square, size).
4. For articles where no custom thumbnail has been defined, the Twixl Publisher plug-in

will generate one on the fly during the Export process.

A sample folder structure should then look as follows:

Page 32Advanced features

• Article1.indd
• Article1.jpg (1024 × 1024 pixels)
• Article1@2x.jpg (2048 × 2048 pixels)
• Article2.indd
• Article2.jpg (1024 × 1024 pixels)
• Article2@2x.jpg (2048 × 2048 pixels)
• MyPublication.indb

For HTML-articles
The Twixl Distribution Platform will generate thumbnails. Here are the rules you need to
take in account:

• If there is an index.jpg file in the .zip file on the same level as the index.html
file, that image will be used as a thumbnail

• If there is an index.jpeg file in the .zip file on the same level as the index.html
file, that image will be used as a thumbnail

• If there is an index.png file in the .zip file on the same level as the index.html
file, that image will be used as a thumbnail

• If no images are present, the Twixl Distribution Platform will look at the first image it
can find in the HTML-file.

Page 33Advanced features

Resizing Web Content at 100% minus
toolbar

If you have HTML Content (either in an InDesign-article, in an HTML-article our some
kind of Web Viewer), this trick will help you to calculate the available vertical screen
estate, without the toolbar!

What?
The toolbar is not the same on all devices, certainly not on Android devices (due to the
vast multitude of available Android devices). The trick is to check the available size in the
browser window (which in Twixl terminology is the size of the actual web viewer area,
equal to the screen size minus the toolbar)

How?
You can easily do this in JavaScript as follows:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta http-equiv="X-UA-Compatible" content="ie=edge">
 <title>Window Size</title>
</head>
<body>
 <pre><script>
 var windowWidth = window.innerWidth
 || document.documentElement.clientWidth
 || document.body.clientWidth;

 var windowHeight = window.innerHeight
 || document.documentElement.clientHeight
 || document.body.clientHeight;

 document.writeln("window width: " + windowWidth);
 document.writeln("window height: " + windowHeight);
 </script></pre>

Page 34Advanced features

</body>
</html>

Page 35Advanced features

Using the GPS and Google Maps in your
Twixl app

In this KB-article, we'll explain how you can integrate Google Maps into content of
your app. The following types of content are supported:

• HTML-articles
• Web Viewers
• Web Overlay Buttons

1. Create a new HTML web page

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <title>Google maps - Twixl</title>
 <meta name="viewport" content="initial-scale=1.0, user-scalable=no" />

 <style type="text/css">
 html { height: 100%; }
 body { height: 100%; margin: 0; padding: 0; }
 #map_canvas { height: 100%; width: 100%; }
 </style>
 </head>

<body>
 <div id="map_canvas"></div>
</body>
</html>
Explanation:
<div id="map_canvas"></div>
The div map_canvas will be the placeholder for the map.
<style type="text/css">
 html { height: 100%; }
 body { height: 100%; margin: 0; padding: 0; }
 #map_canvas { height: 100%; width: 100%; }
</style>

The inline CSS above will make your HTML page scalable. So you can easily change width
and height from your canvas (also in InDesign).

Page 36Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115000718185-working-with-content-items
https://twixlmedia.zendesk.com/hc/en-us/articles/115000739445-web-viewers
https://twixlmedia.zendesk.com/hc/en-us/articles/115000779769-web-overlay-buttons

2. Add Google API
First you need to provide a link to the Google Maps API and add the initialize function to
the header of your HTML page. The URL contained in the script tag is the location of a
JavaScript file that loads all of the symbols and definitions you need for using the Google
Maps API. This script tag is required.

<script type="text/javascript" src="http://maps.google.com/maps/api/
js?sensor=false"></script>

<script type="text/javascript">
 function initialize() {

 var mapOptions = {
 center: new google.maps.LatLng(51.01471, 3.651465),
 zoom: 11,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 var map = new google.maps.Map(document.getElementById("map_canvas"), mapOptions);
}
</script>

Also edit the body tag in your page so we call the initialize function on page load.

<body onload="initialize()">

Explanation:

var mapOptions = {
center: new google.maps.LatLng(51.01471, 3.651465),
zoom: 11,
mapTypeId: google.maps.MapTypeId.ROADMAP
};

In the variable mapOptions you define the map options:

• Latitudes and Longitudes (center the map on a specific point)
• Zoom Levels (Where zoom 0 corresponds to a map of the Earth fully zoomed out, and

higher zoom levels zoom in at a higher resolution.)
• Map Types (ROADMAP , SATELLITE , HYBRID and TERRAIN)

var map = new google.maps.Map(document.getElementById("map_canvas"), mapOptions);

Page 37Advanced features

When you create a new map instance, you specify a <div> HTML element in the page
as a container for the map. HTML nodes are children of the JavaScript document object,
and we obtain a reference to this element via
the document.getElementById() method.

3. Add pins to the map

var marker = new google.maps.Marker({

position: new google.maps.LatLng(51.01471,3.651465),

map: map,

});

To add a default pin to your map you need to add this javascript code in the initialize
function after the map variable. Custom pin:

var image = 'http://website.com/pin_icon.png';

var marker = new google.maps.Marker({

position: new google.maps.LatLng(51.01471,3.651465),

map: map,

icon: image

});

Other options for the marker are:

• clickable (boolean)
• draggable (boolean)
• flat (boolean) -> removes shadow
• title (string) -> rollover text
• zIndex (number)

4. Events marker & map

google.maps.event.addListener(marker, 'click', function() {
 alert('demo alert');
 });

Page 38Advanced features

You also can add events to your markers and map
with: google.maps.event.addListener In the event function you can place URL's, alerts,
infoWindows, ...

Events:

• click
• dblclick
• mouseup
• mousedown
• mouseover
• mouseout

5. Current GPS location
In order to add the current GPS location, first we change the Google API url to:

<script type="text/javascript" src="http://maps.google.com/maps/api/
js?sensor=true"></script>

Then add this after the map variable:

// Check for geolocation support
 if (navigator.geolocation) {
 // Get current position
 navigator.geolocation.getCurrentPosition(function (position) {
 // Success!
 var center = new google.maps.LatLng(position.coords.latitude,position.coords.
longitude);

 var image = 'http://i.stack.imgur.com/orZ4x.png';
 var marker = new google.maps.Marker({
 position: center,
 map: map,
 title:"Twixl Demo",
 icon: image,

 });

});
 }
 else {
 // No geolocation fallback:
 markOutLocation(51.01471, 3.651465);
 }

Page 39Advanced features

6. Overview code
The code below will display a pin with the current location

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <title>Google maps - Twixl</title>
 <meta name="viewport" content="initial-scale=1.0, user-scalable=no" />

 <style type="text/css">
 html { height: 100%; }
 body { height: 100%; margin: 0; padding: 0; }
 #map_canvas { height: 100%; width: 100%; }
 </style>

 <script src="http://maps.google.com/maps/api/js?sensor=true"></script>

 <script type="text/javascript">
 function initialize() {

 var mapOptions = {
 center: new google.maps.LatLng(51.01471, 3.651465),
 zoom: 11,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 var map = new google.maps.Map(document.getElementById("map_canvas"), mapOptions);

 // Check for geolocation support
 if (navigator.geolocation) {
 // Get current position
 navigator.geolocation.getCurrentPosition(function (position) {
 // Success!
 var center = new google.maps.LatLng(position.coords.latitude,position.coords.
longitude);

 var image = 'http://i.stack.imgur.com/orZ4x.png';
 var marker = new google.maps.Marker({
 position: center,
 map: map,
 title:"Twixl",
 icon: image,
 });
 });

Page 40Advanced features

 }
 else {
 // No geolocation fallback:
 markOutLocation(51.01471, 3.651465);
 }
 }
 </script>

 </head>

<body onload="initialize()">
 <div id="map_canvas"></div>
</body>
</html>

Page 41Advanced features

Advanced Scripting

Page 42Advanced features

Advanced Scripting: Introduction

With Advanced Scripting you can add conditions to a Content Item or a Collection

1. Advanced Scripting, what is it?
Using Advanced Scripting, you can link a number of properties available in the app
(bundle ID, language, geolocation, ...) and decide whether the Content Item or Collection
should be visible or not.

 ENTITLEMENT PACK REQUIRED:

To make use of the Advanced Scripting functionality, you need to have the
Entitlement Pack activated. This is a paid option. See Specs & Pricing for more
info.

2. General info about Advanced Scripting
Advanced scripting is a collection of JavaScript functions that will be evaluated for each
collection and/or content item in the context of an application.

It can be used to filter the content items shown in a collection based on a custom set of
business rules.

Where can I activate Advanced Scripting?

 ENTITLEMENT PACK REQUIRED:

To use the Advanced Scripting functionality, you need to have the Entitlement
Pack activated. This is a paid option. See Specs & Pricing for more info.

Although Advanced Scripting is all about filtering Content Items and Collections, you
define Advanced Scripting per Collection. As such you need to edit a Collection in order
to adapt the Advanced Scripting to your specific needs.

The default script looks as follows:

Page 43Advanced features

https://twixlmedia.com/en/specs-pricing
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://twixlmedia.com/en/specs-pricing

// Executed once for every collection before the filtering of the items
function setupFilter(collection, environment) {
}

// Executed for once for every collection
function shouldShowCollection(collection, environment) {
 return true;
}

// Executed for every single content item
function shouldShowItem(contentItem, collection, environment) {
 return true;
}

// Executed once for every collection after the filtering of the items
function teardownFilter(collection, environment) {
}

 IMPORTANT:

Each of the 4 base functions that get executed in the advanced filter currently
have a maximum execution time of 2 seconds.

 TIP:

Page 44Advanced features

You can find a complete syntax and lifecycle overview here. This info also can be
found on the Twixl Distribution Platform, below the Advanced Scripting editor
window.

Debugging options

In a mobile article-based app

2.1. Article-based app without a Hamburger Menu

For article-based apps without a Hamburger Menu:

1. Tap the Gear Menu first
2. Then select Advanced Filter Log

2.2. Article-based app with a Hamburger Menu

For article-based apps with a Hamburger Menu:

1. Activate the Hamburger Menu first
2. Select the Gear Menu

Page 45Advanced features

https://platform.twixlmedia.com/documentation/advanced-scripting
https://twixlmedia.zendesk.com/hc/en-us/articles/115003891225-hamburger-menu
https://twixlmedia.zendesk.com/hc/en-us/articles/115003891225-hamburger-menu

3. Then select Advanced Filter Log

In the Browser Client

For The Browser Client, you need to add the suffix ?debug=1 and then you'll notice the
debugger icon in the toolbar.

Page 46Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/360000551909-browser-client

So this means, if your Browser Client url is:

https://browserclient.twixlmedia.com/<app>

Then you'll need to add ?debug=1 in the following way:

https://browserclient.twixlmedia.com/<app>?debug=1

3. Advanced Scripting Sample Apps

 INFO:

We've created several Advanced Scripting Sample Apps for you, each with a
specific case that could be useful. They are a good start to explore the immense
list of possible scenarios for Advanced Scripting. This list can evolve, and new
samples will be added along the way.

• Advanced Scripting | Sample App 1: Login / Logout Button
• Advanced Scripting | Sample App 2: Different content for phone vs tablet vs Browser

Client
• Advanced Scripting | Sample App 3: Using twxlog
• Advanced Scripting | Sample App 4: Using JSON and XML
• Advanced Scripting | Sample App 5: Using twxhttp

Page 47Advanced features

• Advanced Scripting | Sample App 6: Custom Vars
• Advanced Scripting | Sample App 7: Multiple Languages
• Advanced Scripting | Sample App 8: Privacy Policy

Page 48Advanced features

Advanced Scripting | Sample App 1: Login /
Logout Button

In the series Advanced Scripting Sample Apps we explain some use cases on how to
use the Advanced Scripting. For more general info, it's very important that you read
this KB-article first.

Preview with the Twixl App
You can preview this app by scanning the QR code with the Twixl app.

The test Entitlement-account you can use to test this behaviour:

• Username: test
• Password: test

Use Case
In this example, we show a Login button in the app when you are not entitled and a
Logout button when you are entitled.

Page 49Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115002057809-downloads

Instructions

Preparations

1. Create a new app
2. Setup Entitlements in the app (e.g. Print Subscribers)
3. Add a Content Item to the Root Collection with the following properties:

• Type: Web Link
• Name: login
• Link to URL: tp-entitlements-signin://

4. Add a Content Item to the Root Collection with the following properties:
• Type: Web Link
• Name: logout
• Link to URL: tp-entitlements-clear-token://

5. Add a Content Item to the Root Collection with the following properties:
• Type: HTML Article
• Name: whatever

6. Set up your Advanced Scripting (see below)

Advanced Scripting Settings

For the Root Collection

// Executed once for every collection before the filtering of the items
function setupFilter(collection, environment) {
}

// Executed for once for every collection
function shouldShowCollection(collection, environment) {
 return true;
}

// Executed for every single content item
function shouldShowItem(contentItem, collection, environment) {
 if (contentItem.Name == "login") {
 return !environment.IsEntitled();
 }
 if (contentItem.Name == "logout") {
 return environment.IsEntitled();
 }
 return true;

Page 50Advanced features

}

// Executed once for every collection after the filtering of the items
function teardownFilter(collection, environment) {
}

Related KB-articles
• Using the Entitlements option for article-based apps
• Custom URL Schemes for article-based apps
• Working with content items
• Working with collections

Page 51Advanced features

https://twixldocs.screenstepslive.com/65550/l/877372-using-the-entitlements-option-for-article-based-apps
https://twixlmedia.zendesk.com/hc/en-us/articles/115000718185-working-with-content-items
https://twixlmedia.zendesk.com/hc/en-us/articles/115000718185-working-with-content-items
https://twixlmedia.zendesk.com/hc/en-us/articles/115000707549-working-with-collections

Advanced Scripting | Sample App 2:
Different content for phone vs tablet vs
Browser Client

In the series Advanced Scripting Sample Apps we explain some use cases on how to
use the Advanced Scripting. For more general info, it's very important that you read
this KB-article first.

Preview with the Twixl App
You can preview this app by scanning the QR code with the Twixl app.

Use Case
In this example, we show different content on phone vs tablet vs the Browser Client

Page 52Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115002057809-downloads

Instructions

Preparations

1. Create a new app
2. Add the following content items in the Root Collection:

• Placeholder for tablet
• Type: Placeholder
• Name: tablet
• Title: Tablet

• Placeholder for phone
• Type: Placeholder
• Name: phone
• Title: Phone

• Placeholder for browser
• Type: Placeholder
• Name: browser
• Title: Browser

• Placeholder for the other content
• Type: Placeholder
• Name: any
• Title: Any

3. Setup your Advanced Scripting (see below)

Advanced Scripting Settings

1. Exact naming

For the Root Collection:

// Executed once for every collection before the filtering of the items
function setupFilter(collection, environment) {
}

// Executed for once for every collection
function shouldShowCollection(collection, environment) {
 return true;
}

Page 53Advanced features

// Executed for every single content item
function shouldShowItem(contentItem, collection, environment) {
 if (contentItem.Name == "browser") {
 return environment.IsBrowser();
 } else if (contentItem.Name == "phone") {
 return environment.IsPhone();
 } else if (contentItem.Name == "tablet") {
 return environment.IsTablet();
 } else {
 return true;
 }
}

// Executed once for every collection after the filtering of the items
function teardownFilter(collection, environment) {
}

2. Non-exact naming
In reality, your Content Items will probably have other names (in order to differentiate)
and then it's probably not a good idea to call them all phone, or tablet or browser. In
reality, you'll probably work with a suffix, a prefix or a name containing one of the
parameters mentioned above.

2.1. Using a prefix

If you want to add a prefix to your existing Name for your Content Item, then you need to
use the following code:

// Executed once for every collection before the filtering of the items
function setupFilter(collection, environment) {
}

// Executed for once for every collection
function shouldShowCollection(collection, environment) {
 return true;
}

// Executed for every single content item
function shouldShowItem(contentItem, collection, environment) {
 if (contentItem.Name.startsWith("browser")) {
 return environment.IsBrowser();
 } else if (contentItem.Name.startsWith("phone")) {
 return environment.IsPhone();
 } else if (contentItem.Name.startsWith("tablet")) {

Page 54Advanced features

 return environment.IsTablet();
 } else {
 return true;
 }
}

// Executed once for every collection after the filtering of the items
function teardownFilter(collection, environment) {
}

The name of your Content Item should then be something like:

• browser-contentitem01
• phone-contentitem01
• tablet-contentitem01

2.2. Using a suffix

If you want to add a suffix to your existing Name for your Content Item, then you need to
use the following code:

// Executed once for every collection before the filtering of the items
function setupFilter(collection, environment) {
}

// Executed for once for every collection
function shouldShowCollection(collection, environment) {
 return true;
}

// Executed for every single content item
function shouldShowItem(contentItem, collection, environment) {
 if (contentItem.Name.endsWith("browser")) {
 return environment.IsBrowser();
 } else if (contentItem.Name.endsWith("phone")) {
 return environment.IsPhone();
 } else if (contentItem.Name.endsWith("tablet")) {
 return environment.IsTablet();
 } else {
 return true;
 }
}

// Executed once for every collection after the filtering of the items
function teardownFilter(collection, environment) {
}

Page 55Advanced features

The name of your Content Items should then be something like:

• contentitem01-browser
• contentitem01-phone
• contentitem02-tablet

Related KB-articles
• The Browser Client
• Working with collections
• Working with content items

Page 56Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/360000551909-browser-client
https://twixlmedia.zendesk.com/hc/en-us/articles/115000707549-working-with-collections
https://twixlmedia.zendesk.com/hc/en-us/articles/115000718185-working-with-content-items

Advanced Scripting | Sample App 3: Using
twxlog

In the series Advanced Scripting Sample Apps we explain some use cases on how to
use the Advanced Scripting. For more general info, it's very important that you read
this KB-article first.

Preview with the Twixl App
You can preview this app by scanning the QR code with the Twixl app.

Use Case
In this example, we show how to use the twxlog functions and also highlight the
lifecycle of the Advanced Scripting. This is ideal to debug while setting up your Advanced
Scripting scenario!

Page 57Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115002057809-downloads

Instructions

Preparations

1. Create a new app
2. Enable the Hamburger Menu
3. Add a content item in the Root Collection with the following properties:

• Type: Placeholder
• Name: item-root
• Title: Root Collection Item

4. Add a content item in the Hamburger Menu Collection with the following properties:
• Type: Placeholder
• Name: item-hamburger
• Title: Hamburger Item

5. Add a new Collection with the name Sample Collection
6. Add a Content Item in the Sample Collection with the following properties:

• Type: Placeholder
• Name: item-sample
• Title: Sample Collection Item

7. Set up your Advanced Scripting (see below)
8. Run the app in the Twixl app and then go to the Gear menu > Advanced Filter Log to

see the log messages.
9. For the Browser Client, open the Root Collection, append ?debug=1 to the url and

you'll see the debug icon in the toolbar.

Advanced Scripting Settings

For the Root Collection:

// Executed once for every collection before the filtering of the items
function setupFilter(collection, environment) {
 twxlog.Info("setupFilter: " + collection.Name);
}

// Executed for once for every collection
function shouldShowCollection(collection, environment) {
 twxlog.Info("shouldShowCollection: " + collection.Name);
 return true;
}

Page 58Advanced features

// Executed for every single content item
function shouldShowItem(contentItem, collection, environment) {
 twxlog.Info("shouldShowItem: " + collection.Name + ", " + contentItem.Name);
 return true;
}

// Executed once for every collection after the filtering of the items
function teardownFilter(collection, environment) {
 twxlog.Info("teardownFilter: " + collection.Name);
}

For the Hamburger Menu Collection:

// Executed once for every collection before the filtering of the items
function setupFilter(collection, environment) {
 twxlog.Info("setupFilter: " + collection.Name);
}

// Executed for once for every collection
function shouldShowCollection(collection, environment) {
 twxlog.Info("shouldShowCollection: " + collection.Name);
 return true;
}

// Executed for every single content item
function shouldShowItem(contentItem, collection, environment) {
 twxlog.Info("shouldShowItem: " + collection.Name + ", " + contentItem.Name);
 return true;
}

// Executed once for every collection after the filtering of the items
function teardownFilter(collection, environment) {
 twxlog.Info("teardownFilter: " + collection.Name);
}

For the Sample Collection:

// Executed once for every collection before the filtering of the items
function setupFilter(collection, environment) {
 twxlog.Info("setupFilter: " + collection.Name);
}

// Executed for once for every collection
function shouldShowCollection(collection, environment) {
 twxlog.Info("shouldShowCollection: " + collection.Name);
 return true;
}

Page 59Advanced features

// Executed for every single content item
function shouldShowItem(contentItem, collection, environment) {
 twxlog.Info("shouldShowItem: " + collection.Name + ", " + contentItem.Name);
 return true;
}

// Executed once for every collection after the filtering of the items
function teardownFilter(collection, environment) {
 twxlog.Info("teardownFilter: " + collection.Name);
}

Related KB-articles
• Hamburger Menu (> 5.5)
• The Browser Client
• Working with collections
• Working with content items

Page 60Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115003891225-hamburger-menu
https://twixlmedia.zendesk.com/hc/en-us/articles/360000551909-browser-client
https://twixlmedia.zendesk.com/hc/en-us/articles/115000707549-working-with-collections
https://twixlmedia.zendesk.com/hc/en-us/articles/115000718185-working-with-content-items

Advanced Scripting | Sample App 4: Using
JSON and XML

In the series Advanced Scripting Sample Apps we explain some use cases on how to
use the Advanced Scripting. For more general info, it's very important that you read
this KB-article first.

Preview with the Twixl App
You can preview this app by scanning the QR code with the Twixl app.

Use Case
In this example, we show how to use the twxxml and twxjson functions. These allow
you to parse XML and JSON data structures. There are often used in combination with the
twxhttp module as most web services return either JSON or XML.

Some use cases:

1. Based on the Entitlement Token, you can issue for example a request to the
Entitlement Server to get more information about the user and change the content
based on that information. Your Entitlement Server can output XML or JSON so that the
advanced script can easily parse this data.

Page 61Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115002057809-downloads

2. In the setupFilter , you might want to issue an HTTP request to your ad system to
find out which of your ads are still valid so that you can use that information to hide
the invalid ads in your app. If your ad server returns XML or JSON, you can easily parse
the response with the provided twxxml and twxjson modules.

Instructions

Preparations

1. Create a new app
2. Set up your Advanced Scripting (see below)
3. Run the app in the Twixl app and then go to the Gear menu > Advanced Filter Log to

see the log messages.
4. For the browser client, open the root collection, append ?debug=1 to the url and you'll

see the debug icon in the toolbar.

Advanced Scripting Settings

For the Root Collection:

// Executed once for every collection before the filtering of the items
function setupFilter(collection, environment) {

 // Get some json
 var json = '{"name": "Twixl media", "items": ["item 1", "item 2"]}';

 // Parse the json and log it
 var parsedJson = twxjson.Parse(json);
 twxlog.InfoDump(parsedJson);

 // Encode json
 var data = {"name": "Twixl", "items": ["item 1", "item 2"]};
 twxlog.Info(twxjson.Encode(data));

 // Get some xml
 var xml = '<?xml version="1.0" encoding="UTF-8" standalone="no"?><data><name>Twixl
Publisher</name><items count="2"><item>Item 1</item><item>Item 2</item></items></data>';

 // Parse the xml and log it
 var parsedXml = twxxml.ParseString(xml);
 twxlog.Info(parsedXml.String());
 twxlog.InfoDump(parsedXml.Element("name").Text());
 twxlog.InfoDump(parsedXml.Element("items").Attr("count", 0));
 twxlog.InfoDump(parsedXml.Element("items").Elements("item"));

Page 62Advanced features

}

// Executed for once for every collection
function shouldShowCollection(collection, environment) {
 return true;
}

// Executed for every single content item
function shouldShowItem(contentItem, collection, environment) {
 return true;
}

// Executed once for every collection after the filtering of the items
function teardownFilter(collection, environment) {
}

Related KB-articles
• Working with collections

Page 63Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115000707549-working-with-collections

Advanced Scripting | Sample App 5: Using
twxhttp

In the series Advanced Scripting Sample Apps we explain some use cases on how to
use the Advanced Scripting. For more general info, it's very important that you read
this KB-article first.

Preview with the Twixl App
You can preview this app by scanning the QR code with the Twixl app.

Use Case
In this example, we show how to use the twxhttp functions. These allow you to make
requests to external websites to obtain information from there. Very handy to get info
from internal company-tools, e.g. if your Twixl app is a sales tool!

Page 64Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115002057809-downloads

Instructions

Preparations

1. Create a new app
2. Set up your Advanced Scripting (see below)
3. Run the app in the Twixl app and then go to the Gear menu > Advanced Filter Log to

see the log messages.
4. For the Browser Client, open the root collection, append ?debug=1 to the url and you'll

see the debug icon in the toolbar.

Advanced Scripting Settings

For the Root Collection:

// Executed once for every collection before the filtering of the items
function setupFilter(collection, environment) {

 // Get a HTTP client
 var client = twxhttp.NewClient();

 // Get the text from a url
 var textURL = "https://demo.twixlmedia.com/advanced-scripting/sample.txt";
 var textResponse = client.Get(textURL);
 twxlog.Info("Text output: " + textResponse.ToString());

 // Get JSON from a url
 var jsonURL = "https://demo.twixlmedia.com/advanced-scripting/sample.json";
 var jsonResponse = client.Get(jsonURL);
 twxlog.InfoDump(jsonResponse.ToJSON());

 // Using the status code
 var badURL = "https://demo.twixlmedia.com/advanced-scripting/sample.invalid";
 var badResponse = client.Get(badURL);
 twxlog.Info("Status code: " + badResponse.StatusCode());

 // HTTP Post
 var postURL = "https://demo.twixlmedia.com/advanced-scripting/post.php";
 var postResponse = client.PostForm(postURL, {"name": "Twixl media", "product":
"Twixl Publisher"});
 twxlog.Info("Post output: " + postResponse.ToString());

 // HTTP Raw Post

Page 65Advanced features

 var rawURL = "https://demo.twixlmedia.com/advanced-scripting/post_json.php";
 var rawResponse = client.PostRaw(rawURL, "application/json", '{"name": "Twixl
media", "product": "Twixl Publisher"}');
 twxlog.Info("Raw Post output: " + rawResponse.ToString());

}

// Executed for once for every collection
function shouldShowCollection(collection, environment) {
 return true;
}

// Executed for every single content item
function shouldShowItem(contentItem, collection, environment) {
 return true;
}

// Executed once for every collection after the filtering of the items
function teardownFilter(collection, environment) {
}

Related KB-articles
• Working with collections
• The Browser Client

Page 66Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115000707549-working-with-collections
https://twixlmedia.zendesk.com/hc/en-us/articles/360000551909-browser-client

Advanced Scripting | Sample App 6:
Custom Vars

In the series Advanced Scripting Sample Apps we explain some use cases on how to
use the Advanced Scripting. For more general info, it's very important that you read
this KB-article first.

Preview with the Twixl App
You can preview this app by scanning the QR code with the Twixl app.

Use Case
In this example, we show how to use the tp-set-custom-vars:// function.

Custom variables allow you to set one or more variables with the following properties:

• They are saved on the device
• They can be re-used in the advanced scripting

A sample scenario is e.g. to store a user preference and change the content based on
that variable.

Page 67Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115002057809-downloads

Instructions

Preparations

1. Create a new app
2. Add a content item with the following properties to the Root Collection:

• Type: Web Link
• Title: Set custom vars
• URL: tp-set-custom-vars://?name=Twixl&product=Publisher

3. Add a content item with the following properties to the root collection:
• Type: Web Link
• Title: Clear custom vars
• URL: tp-set-custom-vars://?name=&product=

4. Set up your Advanced Scripting (see below)
5. Run the app in the Twixl app and then go to the Gear menu > Advanced Filter Log to

see the log messages.
6. For the Browser Client, open the Root Collection, append ?debug=1 to the url and

you'll see the debug icon in the toolbar.
7. After tapping the Set Variables, check the debugger again to see that the values are

saved

Advanced Scripting Settings

For the Root Collection

// Executed once for every collection before the filtering of the items
function setupFilter(collection, environment) {

 var customVars = environment.CustomVars();
 twxlog.InfoDump(customVars);

}

// Executed for once for every collection
function shouldShowCollection(collection, environment) {
 return true;
}

// Executed for every single content item
function shouldShowItem(contentItem, collection, environment) {
 return true;

Page 68Advanced features

}

// Executed once for every collection after the filtering of the items
function teardownFilter(collection, environment) {
}

How to use Custom Variables in a HTML-article?

If you want to get a list of Custom Variables from within an HTML-article, you can use the
following sample code:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta http-equiv="X-UA-Compatible" content="ie=edge">
 <title>tp-get-custom-vars</title>
</head>
<body>
 <script>

 function twixlOnGetCustomVars(customVariablesAsJSON) {
 console.log(customVariablesAsJSON);
 }

 window.location.href = "tp-get-custom-vars://twixlOnGetCustomVars";

 </script>
</body>
</html>

Related KB-articles
• Working with collections
• The Browser Client
• Working with content items

Page 69Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115000707549-working-with-collections
https://twixlmedia.zendesk.com/hc/en-us/articles/360000551909-browser-client
https://twixlmedia.zendesk.com/hc/en-us/articles/115000718185-working-with-content-items

Advanced Scripting | Sample App 7:
Multiple Languages

In the series Advanced Scripting Sample Apps we explain some use cases on how to
use the Advanced Scripting. For more general info, it's very important that you read
this KB-article first.

Preview with the Twixl App
You can preview this app by scanning the QR code with the Twixl app.

Use Case
In this example, we show how you can ask the user to select a language and filter
Content Items and Collections based on the chosen language.

Page 70Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115002057809-downloads

Instructions

Preparations

1. Create a new app
2. Add the following contents item to the Root Collection with the following properties:

• Button to select English
• Type: Web link
• Name: select.en
• Title: English
• Link to URL: tp-set-custom-vars://?lang=en

• Button to select French
• Type: Web link
• Name: select.fr
• Title: French
• Link to URL: tp-set-custom-vars://?lang=fr

• English Collection
• Type: Collection and Link
• Name: en.collection1
• Title: English Collection 1

• French Collection
• Type: Collection and Link
• Name: fr.collection1
• Title: French Collection 1

3. Add a content item to the hamburger collection with the following properties:
• Type: Web link
• Name: Choose Language
• Link to URL: tp-set-custom-vars://

4. Set up your Advanced Scripting (see below)

Advanced Scripting Settings

For the Root Collection

// Create a global variable in which we store the language
var language = "";

// Executed once for every collection before the filtering of the items
function setupFilter(collection, environment) {

Page 71Advanced features

 language = environment.CustomVar("lang").toLowerCase();
}

// Executed for once for every collection
function shouldShowCollection(collection, environment) {
 return collection.Name.startsWith(language);
}

// Executed for every single content item
function shouldShowItem(contentItem, collection, environment) {
 if (language !== "") {
 return contentItem.Name.startsWith(language);
 }
 return contentItem.Name.startsWith("select.");
}

// Executed once for every collection after the filtering of the items
function teardownFilter(collection, environment) {
}

For all other collections and the hamburger menu where you want to filter by language

// Create a global variable in which we store the language
var language = "";

// Executed once for every collection before the filtering of the items
function setupFilter(collection, environment) {
 language = environment.CustomVar("lang").toLowerCase();
}

// Executed for once for every collection
function shouldShowCollection(collection, environment) {
 if (language === "") {
 return false;
 }
 return collection.Name.startsWith(language);
}

// Executed for every single content item
function shouldShowItem(contentItem, collection, environment) {
 return true;
}

// Executed once for every collection after the filtering of the items
function teardownFilter(collection, environment) {
}

Page 72Advanced features

Related KB-articles
• Working with collections
• Hamburger Menu
• Working with content items

Page 73Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115000707549-working-with-collections
https://twixlmedia.zendesk.com/hc/en-us/articles/115003891225-hamburger-menu
https://twixlmedia.zendesk.com/hc/en-us/articles/115000718185-working-with-content-items

Advanced Scripting | Sample App 8:
Privacy Policy

In the series Advanced Scripting Sample Apps we explain some use cases for the
Advanced Scripting. For more general info, it's very important that you read this KB-
article first.

Preview with the Twixl App
You can preview this app by scanning the QR code with the Twixl app.

Use Case
In this example, we show how you can add a Privacy Policy to your app which users have
to accept before they are granted access to your app.

Page 74Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115002057809-downloads

Instructions

Preparations

1. Create a new app
2. Add a Cell Style for:

• The Privacy Policy
• The button to accept the Privacy Policy
• The default content

3. Add the following contents items to the Root Collection with the following properties:
• Privacy policy

• Type: Embedded Web Viewer
• Name: privacy.policy
• Title: Privacy Policy
• Content: zipped .html file with the privacy policy

• Button to accept the Privacy Policy
• Type: Web link
• Name: privacy.accept
• Title: Accept & Continue
• Link to URL: tp-set-custom-vars://?has_accepted=yes&version=20190125

• The actual content (just ensure that the name doesn't start with privacy).

4. Set up your Advanced Scripting (see below)

Advanced Scripting Settings

For the Root Collection

// Keep a variable to check if the user accepted the privacy policy
var hasAccepted = false;

// Executed once for every collection before the filtering of the items
function setupFilter(collection, environment) {
 hasAccepted = environment.CustomVar("has_accepted") == "yes";
}

// Executed once for every collection
// Root and hamburger are always shown
function shouldShowCollection(collection) {
 return hasAccepted;

Page 75Advanced features

}

// Executed for every single content item
function shouldShowItem(contentItem, collection, environment) {
 if (contentItem.Name.startsWith("privacy.")) {
 return !hasAccepted;
 }
 return hasAccepted;
}

// Executed once for every collection after the filtering of the items
function teardownFilter(collection, environment) {
}

Extra exercise 1 - Clearing the setting

Preparations

1. Add a the following content item to the Hamburger Menu Collection
• Button to accept the Privacy Policy

• Type: Web link
• Name: <default>
• Title: Clear Privacy Policy
• Link to URL: tp-set-custom-vars://

2. Set up your Advanced Scripting (see below)

Advanced Scripting Settings

For the Hamburger Menu Collection:

// Executed once for every collection before the filtering of the items
function setupFilter(collection, environment) {
}

// Executed for every single content item
function shouldShowItem(contentItem, collection, environment) {
 var hasAccepted = environment.CustomVar("has_accepted") === "yes";
 return hasAccepted;
}

// Executed once for every collection after the filtering of the items
function teardownFilter(collection, environment) {

Page 76Advanced features

}

Extra exercise 2
Try to improve the code and add an extra check to find out which version of the privacy
policy was accepted. If it's different than what has been accepted before, you should
force the user to agree to it again…

Related KB-articles
• Working with collections
• Hamburger Menu
• Working with content items

Page 77Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115000707549-working-with-collections
https://twixlmedia.zendesk.com/hc/en-us/articles/115003891225-hamburger-menu
https://twixlmedia.zendesk.com/hc/en-us/articles/115000718185-working-with-content-items

Extra's

Page 78Advanced features

Scripting the Twixl Publisher plug-in

This article expects that you are familiar with Adobe's ExtendScript scripting
language.

1. InDesign ExtendScript Labels
The way the Twixl Publisher plug-in stores the interactive properties is by attaching labels
to the different elements.

Every object in Adobe InDesign can be provided with one or more labels via de
ExtendScript function:

object.insertLabel(key, value)

To retrieve the label, you can use the extractLabel function using a specific key:

object.extractLabel(key)

2. Attaching properties
Here's an overview of the type of InDesign elements you can attach properties to,
depending on the type of interactive element:

1. Slide Show: MultiStateObject
2. Web Viewer: Rectangle
3. Web Overlay: Rectangle, TextFrame, PageItem
4. Scrollable Content: Rectangle with one PageItem as its child element
5. Full screen image: Graphic
6. Movie: Movie
7. Sound: Sound
8. Image Sequence: Rectangle

3. Twixl Publisher interactive element keys
Every type of Twixl Publisher interactive element has its own key under which the
properties are saved. Here's an overview:

Page 79Advanced features

Slide Show com.rovingbird.epublisher.mso

Web Viewer com.rovingbird.epublisher.wv

Web Overlay com.rovingbird.epublisher.wo

Scrollable Content com.rovingbird.epublisher.sc

Full screen image com.rovingbird.epublisher.image

Movie com.rovingbird.epublisher.movie

Sound com.rovingbird.epublisher.sound

Image Sequence com.rovingbird.imagesequence

4. JSON
Under these keys, all properties are saved in a JSON data structure. JSON
(http://www.json.org) is a text based format which makes it very easy to store key/value
structures.

var myProperties = {
 key1: “value",
 key2: “value",
 key3: “value"
};
var myJsonString = JSON.stringify(myProperties);
myObject.insertLabel("com.rovingbird.epublisher.mso", myJsonString);

To retrieve it later on, you can use the following code:

var myLabel = myObject.extractLabel("com.rovingbird.epublisher.mso");
var myProperties = JSON.parse(myLabel);

Page 80Advanced features

http://www.json.org/

5. Property overview

5.1. Slide Show

{
 'msoShowScrollViewIndicator': false,
 'msoAllowUserInteraction': false,
 'msoShowScrollbars': false,
 'msoAllowFullScreen': false,
 'msoScrollViewIndicatorOpacity': 50,
 'msoScrollViewIndicatorBackgroundColor': '000000',
 'msoScrollViewIndicatorActiveColor': 'FFFFFF',
 'msoScrollViewIndicatorInactiveColor': 'AAAAAA',
 'msoFileFormat': 'PNG',
 'msoFileFormatIdx': 0,
 'msoFileFormatDesc': '',
 'msoTransitionStyle': 'Push',
 'msoTransitionStyleIdx': 0,
 'msoAllowAutoPlay': false,
 'msoInterval': 0,
 'msoDelay': 0,
 'msoTapPlayPause': false,
 'msoAllowLoop': false,
}

5.2. Web Viewer

{
 'wvUrl': '',
 'wvAllowUserInteraction': false,
 'wvTransparent': false,
 'wvScaleToFit': false,
 'wvShowScrollbars': false,
 'wvOpenLinksInline': true,
 'wvShowLoadingIndicator': false,
}

5.3. Web Overlay

{

Page 81Advanced features

 'woUrl': '',
 'woAllowUserInteraction': false,
 'woWidth': '',
 'woHeight': '',
 'woShowScrollbars': false,
 'woShowLoadingIndicator': false,
 'woBackgroundColor': '000000',
 'woBackgroundOpacity': 50,
 'woAnalyticsName': '',
 'woScaleToFit': false,
}

5.4. Scrollable Content

{
 'scAllowScrolling': false,
 'scShowScrollbars': true,
 'scEnablePaging': false,
 'scEnableZooming': false,
}

5.5. Movies

{
 'movieAutoStart': false,
 'movieShowController': false,
 'movieLoop': false,
 'movieShowFullScreen': false,
 'movieReturnToPosterFrame': false,
 'movieAnalyticsName': '',
}

5.6. Sound

{
 'soundAutoStart': false,
 'soundLoop': false,
 'soundAnalyticsName': '',
}

Page 82Advanced features

5.7. Full Screen Images

{
 'imageAllowFullScreen': false,
 'imageAnalyticsName': '',
}

5.8. Image Sequences

{
 'isqFolder': '',
 'isqReverse': false,
 'isqAnalyticsName': '',
}

6. Automating preflight, export and preview
Download an example (for .article and .publication files) to see how the preflight, export
and preview processes can be scripted:

InDesign-Plugin Scripting Examples

Page 83Advanced features

https://services.twixlmedia.com/mika/support/zendesk/downloads/Plugin_ScriptingExamples.zip

Installing the Helper as a Windows Service

In some cases, it can be helpful to run the Helper as a Windows Service (e.g. when
you are using InDesign Server to script some parts of your Twixl Publisher workflow).
This KB-article explains how to do install the Helper as a Windows Service.

Run the following command from a windows command prompt with admin privileges:

C:\Program Files (x86)\TwixlPublisher\TwixlPublisherHelper.exe --service install

This will install the Twixl Publisher Helper under the LocalSystem account. However, it will
need to run under the same user account as Adobe InDesign Server to make it work
properly.

To do so, go to computer management and select services. Then double click on the
Twixl Publisher Helper service and change the user in LoginAs to the same user

account as the one used by InDesign Server.

Once you have done so, you should be able to start it and it should be recognized by the
InDesign plugin and InDesign Server, even when no user is logged in to the system.

However, one last thing needs to be taken into account before starting the service. You
should check task manager to make sure no TwixlPublisherHelper.exe process is
running before starting the service, otherwise, it won't work.

Page 84Advanced features

 IMPORTANT NOTE:

It might be necessary to navigate to the path first (before entering the
command):

cd Program Files (x86)\TwixlPublisher\TwixlPublisherHelper.exe

TwixlPublisherHelper.exe --service install

Page 85Advanced features

How to pass a Custom Entitlements Server
token to the Browser Client?

In some cases, it might be interesting to pass the login from a Custom Entitlements
Server directly to the Browser Client of your article-based apps. This KB-article
explains possible reasons (scenarios), requirements and how to do this.

1. Why could this be useful?
Your article-based app is an in-house app and is linked to an internal tool (a CRM,
Salesforce, Microsoft Sharepoint, ...). To make content available via the Browser Client,
you provide urls in your internal company tool that link directly to the Browser Client
without the need for the user to login again.

2. Requirements
What do you need?

• An article-based app with the Browser Client activated
• A Custom Entitlements Server
• Access to the entitlements tokens (a username, an email-address), depending in the

specific setup of your Custom Entitlements Server.

 ABOUT THE BUILT-IN ENTITLEMENT SCENARIOS:

When you are not using a Custom Entitlements Server, it's technically possible to
use this Advanced Feature with one of the built-in Entitlements scenarios. But this
will require you to use our API and the setup will be much more complex.
Furthermore, most use cases are all about connecting the Browser Client with
users from internal company tools. And in the vast majority of those cases, that's
why a Custom Entitlements Server is needed anyway.

3. How to setup?
By using the query string paremeter called twx-set-entitlement-token , you can tell
the Browser Client to use that specific Entitlement Token. It will set the token and force a

Page 86Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/115000732265-integrating-a-custom-entitlements-server
https://twixlmedia.zendesk.com/hc/en-us/articles/115000732265-integrating-a-custom-entitlements-server
https://twixlmedia.zendesk.com/hc/en-us/articles/360000551909-browser-client
https://twixlmedia.zendesk.com/hc/en-us/articles/360000551909-browser-client
https://twixlmedia.zendesk.com/hc/en-us/articles/360000551909-browser-client
https://twixlmedia.zendesk.com/hc/en-us/articles/115000732265-integrating-a-custom-entitlements-server
https://twixlmedia.zendesk.com/hc/en-us/articles/115000732265-integrating-a-custom-entitlements-server
https://twixlmedia.zendesk.com/hc/en-us/articles/115000732265-integrating-a-custom-entitlements-server
https://twixldocs.screenstepslive.com/a/688171-using-the-entitlements-option
https://twixlmedia.zendesk.com/hc/en-us/articles/115000707609-integration-api
https://twixlmedia.zendesk.com/hc/en-us/articles/360000551909-browser-client
https://twixlmedia.zendesk.com/hc/en-us/articles/115000732265-integrating-a-custom-entitlements-server
https://twixlmedia.zendesk.com/hc/en-us/articles/360000551909-browser-client

redirect to the same url without the entitlement token parameter. As such, you'll need to
construct your url as following:

https://[browserclient-url]?twx-set-entitlement-token=[token]

3.1. Possible examples

https://browserclient.twixlmedia.com/app-key?twx-set-entitlement-token=user-1@company-a.
com

• https://browserclient.twixlmedia.com/app-key : In this case, the url is a default Twixl
URL without Custom Domain (see The Browser Client for more info).

• ?twx-set-entitlement-token= : This query string parameter is necessary to call the
next part of the url, the token.

• user-1@company-a.com : The token is in this case an email address. This could have
been a username or something else (depending on the method used in your inhouse
tool).

https://demoapp.company-a.com?twx-set-entitlement-token=user1

• https://demoapp.company-a.com : In this case, the url is a Custom Domain linking to
your Browser Client (see The Browser Client for more info about using Custom
Domains).

• ?twx-set-entitlement-token= : This query string parameter is necessary to call the
next part of the url, the token.

• users1 : The token is in this case a username. This could have been an access code, an
email address or something else (depending on the method used in your internal
company tool).

Page 87Advanced features

https://twixlmedia.zendesk.com/hc/en-us/articles/360000551909-browser-client
https://twixlmedia.zendesk.com/hc/en-us/articles/360000551909-browser-client

	Designing
	Accessibility Features in Twixl apps
	1. VoiceOver (iOS) & Talkback (Android)
	2. Dynamic Type (iOS) & Font size and display size (Android)
	3. How to use?

	Using custom URL Schemes in your app
	1. Navigating to a collection or article
	2. Navigating to an article or page
	3. Show/hide the toolbar (for InDesign content)
	4. Show Table of Contents (for InDesign content)
	5. Downloads overview
	5.1. Watch a short 'How to' video…

	6. Library overview
	7. Searching
	8. Paywall & subscriptions
	9. Entitlements
	Show the Entitlements sign-in form
	Show the Entitlements register form
	Get entitlement token
	Clear entitlement token

	10. Sending e-mail
	11. Making a phone call
	12. Sharing on social media
	13. Going back in Browsing History
	14. Going back in Navigation History
	Example:

	15. Launching an app
	16. Registering a test device for push notifications
	17. Launching third-party apps
	18. Opening a hyperlink in the device browser
	19. Open in embedded web browser
	20. Get the device info via JavaScript
	21. Custom Variables

	Custom URL Schemes: Advanced Mailto hyperlinks
	1. General Example
	1.1. What?
	1.2. Syntax

	2. Example with a url in the predefined body.
	2.1. What?
	2.2. Syntax

	Custom URL Schemes: How to use in HTML articles for the Browser Client
	Online/offline content in In Design web viewers or web overlays
	How to integrate a form, survey or shopping basket in a Twixl app
	How does this work?

	Embedding a Twitter feed in HTML
	Don't!
	Do!

	How to display video in a Browse Grid cell?
	In short
	How to

	Using custom thumbnails in the Table of Contents viewer
	For InDesign-based content
	For HTML-articles

	Resizing Web Content at 100% minus toolbar
	What?
	How?

	Using the GPS and Google Maps in your Twixl app
	1. Create a new HTML web page
	2. Add Google API
	3. Add pins to the map
	4. Events marker & map
	5. Current GPS location
	6. Overview code

	Advanced Scripting
	Advanced Scripting: Introduction
	1. Advanced Scripting, what is it?
	2. General info about Advanced Scripting
	Where can I activate Advanced Scripting?
	Debugging options
	In a mobile article-based app
	2.1. Article-based app without a Hamburger Menu
	2.2. Article-based app with a Hamburger Menu

	In the Browser Client

	3. Advanced Scripting Sample Apps

	Advanced Scripting | Sample App 1: Login / Logout Button
	Preview with the Twixl App
	Use Case
	Instructions
	Preparations
	Advanced Scripting Settings

	Related KB-articles

	Advanced Scripting | Sample App 2: Different content for phone vs tablet vs Browser Client
	Preview with the Twixl App
	Use Case
	Instructions
	Preparations
	Advanced Scripting Settings
	1. Exact naming
	2.1. Using a prefix
	2.2. Using a suffix

	Related KB-articles

	Advanced Scripting | Sample App 3: Using twxlog
	Preview with the Twixl App
	Use Case
	Instructions
	Preparations
	Advanced Scripting Settings

	Related KB-articles

	Advanced Scripting | Sample App 4: Using JSON and XML
	Preview with the Twixl App
	Use Case
	Instructions
	Preparations
	Advanced Scripting Settings

	Related KB-articles

	Advanced Scripting | Sample App 5: Using twxhttp
	Preview with the Twixl App
	Use Case
	Instructions
	Preparations
	Advanced Scripting Settings

	Related KB-articles

	Advanced Scripting | Sample App 6: Custom Vars
	Preview with the Twixl App
	Use Case
	Instructions
	Preparations
	Advanced Scripting Settings
	How to use Custom Variables in a HTML-article?

	Related KB-articles

	Advanced Scripting | Sample App 7: Multiple Languages
	Preview with the Twixl App
	Use Case
	Instructions
	Preparations
	Advanced Scripting Settings

	Related KB-articles

	Advanced Scripting | Sample App 8: Privacy Policy
	Preview with the Twixl App
	Use Case
	Instructions
	Preparations
	Advanced Scripting Settings

	Extra exercise 1 - Clearing the setting
	Preparations
	Advanced Scripting Settings

	Extra exercise 2
	Related KB-articles

	Extra's
	Scripting the Twixl Publisher plug-in
	1. InDesign ExtendScript Labels
	2. Attaching properties
	3. Twixl Publisher interactive element keys
	4. JSON
	5. Property overview
	5.1. Slide Show
	5.2. Web Viewer
	5.3. Web Overlay
	5.4. Scrollable Content
	5.5. Movies
	5.6. Sound
	5.7. Full Screen Images
	5.8. Image Sequences

	6. Automating preflight, export and preview

	Installing the Helper as a Windows Service
	How to pass a Custom Entitlements Server token to the Browser Client?
	1. Why could this be useful?
	2. Requirements
	3. How to setup?
	3.1. Possible examples

