
2 FOURIER SERIES  
Mathematics compares the most diverse phenomena and discovers the secret analogies that unite them.  

- JOSEPH FOURIER  

Topics to Review  
This chapter is independent of the previous one. The core material (Sections 2 1-2. 4) requires only a basic knowledge of 
calculus. An elementary knowledge of complex numbers is required for Section 2.6. Sections 2.5, 2.8, 2.9, and 2.10 are self-
contained advanced topics. The applications in Section 2.7 involve ordinary differential equations with constant coefficients. 
Background for this Section is found in Appendix A.2.  

Looking Ahead ...  
Fourier series, as presented in Sections 2.1-2.4. arc essential for all that follows and cannot be omitted.  

Sections 2.5 and 2.8-2.10 contain theoretical properties of Fourier series. They may be omitted without affecting the continuity 
of the book. However, they are strongly recommended in a course emphasizing Fourier series. ln particular, the proof of the 
Fourier series representation theorem in Section 2.8 reveals interesting ideas from Fourier analysis.  

Section 2.6 serves as a good motivation for the Fourier transform in Chapter 7. 

In Section 2.7 we study the forced oscillations of mechanical or electrical system. While the equations that arise are ordinary 
differential equations, their solutions require topics such as linearity of equations and superposition of solutions that are very 
useful in later chapters. 

Like the familiar Taylor series, Fourier series are special types of expansions of functions. With Taylor series, we are inter-ested 
in expanding a function in terms of the special set of func-tions 1, x, x ^ 2, x ^ 3, ... With Fourier series, we are interested in 
expanding a function in terms of the special set of functions 1, cos x, cos 2 × x, cos 3 × x, ..., sin × x, sin 2 × x, sin 3 × x, ....  Thus, a 
Fourier series expansion of a function f is an expression of the form  

f (x) = a_0 + ∑ from n = 1 to ∞ of (a_n × cos n × x + b_n sin n × x). 

Fourier series arose naturally when we discussed the vibrations of a plucked string (Section 1.2). As we will see in the following 
chapters, Fourier series are indeed the most suitable expansions for solving cer-tain classical problems in applied mathematics. 
They are fundamental to the description of important physical phenomena from diverse fields, such as mechanical and acoustic 
vibrations, heat transfer, planetary motion, optics, and signal processing, to name just a few.  

The importance of Fourier series stems from the work of the French mathematician Joseph Fourier, who claimed that any 
function defined on a finite interval has a Fourier series expansion. The purpose of this chapter is to investigate the validity of 
Fourier's claim and derive the basic properties of Fourier series, preparing the way for the important applications of the 
following chapters.  



2.1 Periodic Functions  
As we saw in Section 1.2, Fourier series are essential in solving certain partial differential equations. In this section we introduce 
some basic concepts that will be useful for our treatment of the general theory of Fourier series.  

Consider the function sin x whose graph is shown in Figure 1. Since the values of sin x repeat every 27r units, its graph is 
obtained by repeating the portion over any interval of length 27r. This periodicity is expressed by the identity  

sin x = sin (x + 2 × π) for all x. 

In general, a function f satisfying the identity  

(1) f (x) = f (x + T) for all x, 

where T > 0, is called periodic, or more specifically, T-periodic (Figure 2). The number T is called a period of f. If f is nonconstant, 
we define the fundamental period, or simply, the period of f to be the smallest positive number T for which (1) holds. For 
example, the functions 3, sin x, sin 2 × x are all 2 × π-periodic. The period of sin x is 2 × π, while the period of sin 2 × x is π.  

Using (1) repeatedly, we get  

f (x) = f (x + T) = f (x + 2 × T) = … = f (x + n × T). 

Hence if T is a period, then n × T is also a period for any integer n > 0. In the case of the sine function, this amounts to saying that 
2× π, 4 × π, 6 × π, ... are all periods of sin x, but only 2 × π is the fundamental period. Because the values of a T-periodic function 
repeat every T units, its graph is obtained by repeating the portion over any interval of length T (Figure 2). As a consequence, to 
define a T-periodic function, it is enough to describe it over an interval of length T. Obviously, the interval can be chosen in many 
different ways. The following example illustrates these ideas.  

Figure 1 Graph of sin x.  

Figure 2 A T-periodic function.  

Figure 3 A 2-periodic function.  

EXAMPLE 1 Describing a periodic function  
Describe the 2-periodic function f in Figure 3 in two different ways:  

(a) by considering its values on the interval 0 ≤ x < 2;  
(b) by considering its values on the interval negative 1 ≤ x < 1.  

Solution  

(a) On the interval 0 ≤ x < 2 the graph is a portion of the straight line y = negative x + 1. Thus  

f (x) = negative x + 1 if 0 ≤ x < 2. 

Now the relation f (x + 2) = f (x) describes f for all other values of x.  



(b) On the interval negative 1 ≤ r < 1, the graph consists of two straight lines (Figure 3). We have  

f (x) = negative x − 1 if negative 1 ≤ x < 0, negative x + 1 if 0 ≤ x < 1. 

As in part (a), the relation f (x + 2) = f (x) describes f for all values of x outside the interval [negative 1, 1). 

Although the formulas in Example 1 (a) and (b) are different, they describe the same periodic function. We use common sense in 
choosing the most convenient formula in a given situation (see Example 2 of this section for an illustration).  

Piecewise Continuous and Piecewise Smooth Functions  
We now present a class of functions that is of great interest to us. The important terminology that we introduce will be used 
throughout the text. Consider the function f (x) in Figure 3. This function is not continuous at x = 0, ±2, ±4, .... Take a point of 
discontinuity, say x = 0. The limit of the function from the left is negative 1, while the limit from the right is 1. Symbolically, this is 
denoted by  

f (0^−) = lim as n → 0^− of f (x) = negative 1 and f (0^+) = lim as n → 0^+ of f (x) = 1. 

In general, we write  

f (c^−) = lim as n → c^− of f (x) 

to denote the fact that f approaches the number f (c^−) as x approaches c from below. Similarly, if the limit of f exists as x 
approaches c from above, we denote this limit f (c^+) and write  

f (c^+) = lim as n → c^− of f (x) 

(Figure 4). Recall that a function f is continuous at c if  

f (c) = lim as n → c of f (x). 

In particular, f is continuous at c if and only if  

f (c^-) = f (c^+) = f (c). 

Figure 4 Left and right limits.  

PIECEWISE CONTINUOUS FUNCTIONS 

A function f is said to be piecewise continuous on the interval [a, b] if  

 f (a^+) and f (b^−) exist, and  
 f is defined and continuous on (a, b) except at a finite number of points in (a, b) where the left and right limits exist.  

A periodic function is said to be piecewise continuous if it is piecewise continuous on every interval of the form [a, b]. A periodic 
function is said  



to be continuous if it is continuous on the entire real line. Note that continuity forces a certain behavior of the periodic function 
at the endpoints of any interval of length one period. For example, if f is T-periodic and continuous, then necessarily f (0^+) = f 
(T^−) (Figure 5).  

The function in Example 1 enjoys another interesting property in addi-tion to being piecewise continuous. Because the slopes of 
the line segments on the graph of f are all equal to negative 1, we conclude that f' = (x) negative 1 for all x ≠ 0, ±2, ±4, .... So the 
derivative f' (x) exists and is continuous for all x ≠ 0, ±2, ±4, ..., and at these exceptional points where the derivative does not 
exist, the left and right limits of f' (x) exist (indeed, they are equal to negative 1). In other words, f' (x) is piecewise continuous. 
With this example in mind, we introduce a property that will be used very frequently.  

Figure 5 A continuous T-periodic function. 

PIECEWISE SMOOTH FUNCTIONS  

A function f, defined on the interval [a, b], is said to be piecewise smooth if f and f' are piecewise continuous on [a, b]. Thus f is 
piecewise smooth if 

 f is piecewise continuous on [a, b],  
 f' exists and is continuous in (a, b) except possibly at finitely many points c where the one-sided limits lim as n → c^− of f' 

(x) and lim as n → c^+ of f' (x) exist. Furthermore, lim as n → a^+ of f' (x) and lim as n → b^− of f' (x) exist. 

A periodic function is piecewise smooth if it is piecewise smooth on every interval [a, b]. A function f is smooth if f and f' are 
continuous.  

The function sin x is smooth. The function in Example 1 is piecewise smooth but not smooth. The function x ^ 1 ÷ 3 for negative 1 
≤ x ≤ 1 is not piecewise smooth because neither the derivative nor its left or right limits exist at x = 0. Additional examples are 
discussed in the exercises.  

The following useful theorem, whose content is intuitively clear, states that the definite integral of a T-periodic function is the 
same over any interval of length T (Figure 6).  

THEOREM 1 INTEGRAL OVER ONE PERIOD 
Suppose that f is piecewise continuous and T-periodic. Then, for any real number a, we have  

∫ from 0 to T of f (x) dx = ∫ from a to a +T of f (x) dx 

Proof  

To simplify the proof, we suppose that f is continuous. For the general case, see Exercise 26. Define 

F of a = ∫ from a to a +T of f (x) dx 



By the fundamental theorem of calculus, we have F' (a) = f (a + T) – f (a) = 0, because f is periodic with period T. Hence F (a) is 
constant for all a, and so F (0) = F (a), which implies the theorem.  

An alternative proof of Theorem 1 is presented in Exercise 18.  

Figure 6 Areas over one period.  

EXAMPLE 2 Integrating periodic functions  
Let f be the 2-periodic function in Example 1. Use Theorem 1 to compute  

(a) ∫ from negative 1 to 1 of f^2 (x) dx, 
(b) ∫ from negative N to N of f^2 (x) dx, N a positive integer. 

Solution  

(a) Observe that f^2 (x) is also 2-periodic. Thus, by Theorem 1, to compute the integral in (a) we may choose any interval of 
length 2. Since on the interval (0, 2) the function f (x) is given by a single formula, we choose to work on this interval, and, using 
the formula from Example 1 (a), we find  

∫ from negative 1 to 1 of f^2 (x) dx = ∫ from 0 to 2 of f^2 (x) dx = ∫ from 0 to 2 of (negative x + 1) ^ 2 dx = 1 ÷ 3 × (negative x + 1) ^ 
3 from 0 to 2 = 2 ÷ 3 

(b) We break up the integral ∫ from negative N to N of into the sum of N integrals over intervals of length 2, of the form ∫ from n 
to n + 2, n = negative N, negative N + 2, ..., N − 2, as follows:  

∫ from negative N to N of f^2 (x) dx = ∫ from negative N to negative N + 2 of f^2 (x) dx + ∫ from negative N + 2 to negative N + 4 of 
f^2 (x) dx + … + ∫ from N − 2 to N of f^2 (x) dx 

Since f^2 (x) is 2-periodic, by Theorem 1, each integral on the right side is equal to  

∫ from negative 1 to 1 of f^2 (x) dx, by (a). Hence the desired integral is N times 2 ÷ 3 or 2 × N ÷ 3. 

The Trigonometric System and Orthogonality  
The most important periodic functions are those in the (2 × π-periodic) trigono-metric system  

1, cos x, cos 2 × x, cos 3 × x, ..., cos m × x, …, sin × x, sin 2 × x, sin 3 × x, ..., sin n × x, ... 

You can easily check that these functions are periodic with period 2 × π. Another useful property enjoyed by the trigonometric 
system is orthogonality. We say that two functions f and g are orthogonal over the interval [a, b] if ∫ from a to b of f (x) × g (x) dx 
= 0. The notion of orthogonality is extremely important and will be developed in detail in Chapter 6. We introduce the 
terminology here for convenience.  



In what follows, the indices m and n are nonnegative integers. The orthogonality properties of the trigonometric system are 
expressed by  

∫ from negative π to π of cos n × x dx = 0 if m ≠ n, 

∫ from negative π to π of sin n × x dx = 0 for all m and n, 

∫ from negative π to π of sin n × x dx = 0 if m ≠ n. 

We also have the following useful identities:  

∫ from negative π to π of cos^2 m × x dx = ∫ from negative π to π of sin^2 m × x dx = π for all m ≠ 0. 

There are several possible ways to prove these identities. For example, to prove the first one, we can use a trigonometric 
identity and write  

cos m × x × cos n × x = 1 ÷ 2 × (cos (m + n) × x + cos (m − n) × x). 

Since m ± n ≠ 0, we get  

∫ from negative π to π of cos m × x × cos n × x dx 

= 1 ÷ 2 × [1 ÷ m + n × sin (m + n) × x+ 1 ÷ m – n × sin (m – n) × x] from negative π to π = 0. 

We end this section by describing some interesting examples of periodic functions related to the greatest integer function, also 
known as the floor function,  

[x] = greatest integer not larger than x.  

As can be seen from Figure 7, the function [x] is piecewise smooth with discontinuities at the integers.  

Figure 7 The greatest integer function [x].  

Figure 8 Graph of the 1-periodic function x – [x]. 

EXAMPLE 3 A periodic function constructed with the floor function  
The fractional part of x is the function f (x) = x − [x]. For 0 < x < 1, we have [x] = 0, and so f (x) = x. Also, since [x + 1] = 1 + [x], we 
get  

f (x + 1) = x + 1 − [x + 1] = x + 1 − 1 − [x] = x – [x] = f (x). 

Hence f is periodic with period 1. Its graph (Figure 8) is obtained by repeating the portion of the graph of x over the interval 0 < x 
< 1. The function f is piecewise smooth with discontinuities at the integers.  

Further examples of periodic functions related to the greatest integer function are presented in Exercises 19-23.  



Exercises 2.1  
In Exercises 1-2, find a period of the given function and 
sketch its graph.  

1.  

(a) cos x,  
(b) cos π × x,  
(c) cos 2 ÷ 3 × x,  
(d) cos x + cos 2 × x.  

2.  

(a) sin 7 × π × x,  
(b) sin n × π × (n an integer),  
(c) cos m × x (m an integer),  
(d) sin x + cos x,  
(e) sin^2 2 × x.  

3.  

(a) Find a formula that describes the function in Figure 
9.  

(b) Describe the set of points where f is continuous. 
Compute f (x^+) and f (x^−) at all points x where f is 
not continuous. Is the function piecewise 
continuous?  

(c) Compute f' (x) at the points where the derivative 
exists. Compute f' (x^+) and f' (x^−) at the points 
where the derivative does not exist. Is the function 
piecewise smooth?  

Figure 9 for Exercise 3.  

4.  

Repeat Exercise 3 using the function in Figure 10.  

Figure 10 for Exercise 4. 

5.  

Establish the orthogonality of the trigonometric system over 
the interval [negative π, π].  

6. Trigonometric systems of arbitrary period.  

Let p > 0 and consider the trigonometric system  

1, cos π ÷ p × x, cos 2 × π ÷ p × x, cos 3 × π ÷ p × x, ..., cos m 
× π ÷ p × x, ...,  

sin π ÷ p × x, sin 2 × π ÷ p × x, sin 3 × π ÷ p × x, ..., sin m × π ÷ 
p × x, ...  

(a) What is a common period of the functions in this 
system?  

(b) State and prove the orthogonality relations for this 
system on the interval [negative p, p].  

7. Sums of periodic functions.  

Show that if f_1, f_2, ..., f_n, ... are T-periodic functions, 
then a_1 × f_1 + a_2 × f_2 + … + a_n × f_n is also T-periodic. 
More generally, show that if the series ∑ from n = 0 to ∞ 
a_n × f_n (x) converges for all x in 0 < x ≤ T, then its limit is a 
T-periodic function.  

8. Sums of periodic functions need not be 
periodic.  

Let f (x) = cos x + cos π × x.  

(a) Show that the equation f (x) = 2 has a unique 
solution.  

(b) Conclude from (a) that f is not periodic. Does this 
contradict Exercise 7? The function f is called almost 
periodic. These functions are of considerable 
interest and have many useful applications.  

9. Operations on periodic functions.  

(a) Let f and g be two T-periodic functions. Show that 
the product f (x) × g (x) and the quotient f (x) ÷ g (x) 
(g (x) ≠ 0) are also T-periodic.  

(b) Show that if f has period T and a > 0, then f (π ÷ a) 
has period a × T and f (a × x) has period T ÷ a.  

(c) Show that if f has period T and g is any function (not 
necessarily periodic), then the composition go f (x) = 
g (f (x)) has period T.  

10.  

With the help of Exercises 7 and 9, determine the period of 
the given function.  

(a) sin 2 × x 
(b) cos 1 ÷ 2 × x+3 × sin 2 × x 
(c) 1 ÷ 2 + sin x 
(d) e ^ cos x 



In Exercises 11-14, a π-periodic function is described over an 
interval of length π. In each case plot the graph over three 
periods and compute the integral  

∫ from negative π ÷ 2 to π ÷ 2 of f (x) dx 

11.  

f (x) = sin x, 0 ≤ x < π.  

12.  

f (x) =cos x, 0 ≤ x < π.  

13. 

f of x equals 1 if 0 < x < π ÷ 2, 0 if negative π ÷ 2 < x < 0. 

14. 

f (x)=x ^ 2, negative π ÷ 2 ≤ x < π ÷ 2 

15. Antiderivatives of periodic functions.  

Suppose that f is 2 × π-periodic and let a be a fixed real 
number. Define  

F (x) = ∫ from a to x of f (t) dt, for all x.  

Show that F is 2 × π-periodic if and only if ∫ from 0 to 2× π of 
f (t) dt = 0. [Hint: Theorem 1.]  

16.  

Suppose that f is T-periodic and let F be an antiderivative of 
f, defined as in Exercise 15. Show that F is T-periodic if and 
only if the integral of f over an interval of length T is 0.  

17.  

(a) Let f be as in Example 1. Describe the function  
F(x) = ∫ from 0 to x of f (t) dt.  
[Hint: By Exercise 16, it is enough to consider x in [0, 
2].]  

(b) Plot F over the interval [negative 4, 4].  

18.  

Prove Theorem 1 as follows.  

(a) Show that for any nonzero integer n we have  
∫ from 0 to T of f (x) dx = ∫ from n × T to (n + 1) × T of 
f (x) dx 
[Hint: Change variables to s = x – n × T in the second 
integral.]  

(b) Let a be any real number, and let n be the (unique) 
integer such that n × T ≤ a < (n + 1) × T ≤ a+ T. Use a 
change of variables to show that  

∫ from n × T to a of f (x) dx = ∫ from (n + 1) × T to a + 
T of f (x) dx. 

(c) Use (a) and (b) to complete the proof of Theorem 1.  

The Greatest Integer Function  

19.  

(a) Plot the function f (x) = x − p × [x ÷ p] for p = 1, 2, π.  
(b) Show that f is p-periodic. What is it equal to on the 

interval 0< x < p?  

20.  

(a) Plot the function f (x) = x – 2 × p [x + p ÷ 2 × p] for p 
= 1, 2, π.  

(b) Show that f is 2 × p-periodic and f (x) = T for all x in 
(negative p, p). As you will see in the following 
exercises, the function f is very useful in defining 
discontinuous periodic functions.  



21. 

Take p =1 in Exercise 20 and consider the function g (x) =f (x) 
^ 2 = (x – 2 × [x + 1 ÷ 2]) ^ 2.  

(a) Show that g is periodic with period 2. [Hint: 
Exercises 9 (c) and 20.]  

(b) Show that g (x) = x ^ 2, for negative 1 < x < 1. 
(c) Plot g (x).  

22. Triangular wave.  

Take p = 1 in Exercise 20 and consider the function h (x) = |f 
(x)| = |x – 2 × [x + 1 ÷ 2]|.  

(a) Show that h is 2-periodic.  

(b) Plot the graph of h.  

(c) Generalize (a) by finding a closed formula that describes 
the 2 × p-periodic trian-gular wave g (x) = |x| if negative p < 
x < p, and g (x + 2 × p) = g (x) otherwise.  

23. Arbitrary shape.  

(a) Suppose that the restriction of a 2 × p-periodic 
function to the interval (negative p, p) is given by a 
function g (x). Show that the 2 × p-periodic function 
can be described on the entire real line by the 
formula g (f (x)), where f is as in Exercise 20.  

(b) Plot and describe the function e ^ f (x), where f is as 
in Exercise 20 with p = 1.  

Piecewise Continuous, Piecewise Smooth 
Functions  

In the following exercises, we recall well-known properties 
from calculus and extend them to piecewise continuous 
functions. Figure 11 shows a piecewise continuous, T-
periodic function, with discontinuities at two points x_1 and 
x_2 in (0, T). Define f_1 (x) for x in [0, x_1] by f_1 (0) = f 
(0^+), f_1 (x) = f (x), if 0 < x < x_1, and f_1 (x_1) = f (x_1^−). 
This makes f_1 continuous on the closed interval [0, x_1]. In 
a similar way, we define f_2 over the interval [x_1, x_2] and 
f_3 over [x_2, x_3]. We will refer to f_1, f_2 and f_3 as the 
continuous components of f. In general, if f has n 
discontinuities inside the interval (0, T), then we will need n 
+ 1 continuous components of f. 

Figure 11 A piecewise continuous function and its 
components. 

24.  

Show that if f is piecewise continuous and T-periodic, then f 
is bounded. [Hint: It is enough to restrict to the interval [0, 
T]. Each component of f is continuous on a closed and 
bounded interval. From calculus, a continuous function on a 
closed and bounded interval is bounded.]  

25.  

Suppose that f is T-periodic and piecewise continuous. Let  

F (a) = ∫ from 0 to a of f (x) dx.  

(a) Show that F is continuous. [Hint: Use Exercise 24. |f 
(x)| ≤ M for all x. Then |F (a + h) – F (a)| ≤ M × h. 
Conclude that F (a + h) → F (a) as h → 0.]  

(b) Show that F' (a) = f (a) at all points a where f is 
continuous. [Hint: If f is continuous for all a, this is 
just the fundamental theorem of calculus. For the 
general case, use the components of f. To simplify 
the proof, you can suppose that f has only two 
discontinuities inside (0, T).]  

26.  

(a) Suppose that f is piecewise continuous and let F (a) 
= ∫ from a to a + T of f (x) dx. Show that F is 
continuous for all a and differentiable at a if f is 
continuous at a.  

(b) Show that F' (a) = 0 for all a where f is continuous. 
Conclude that F is piecewise constant.  

(c) Show that F is constant.  

27.  

Determine if the given function is piecewise continuous, 
piecewise smooth, or neither. Here x is in the interval 
[negative 1, 1] and f (0) = 0 in all cases.  

(a) f (x) =sin 1 ÷ x.  
(b) f (x) =x × sin 1 ÷ x.  
(c) f (x) =x ^ 2 × sin 1 ÷ x.  
(d) f (x) =x ^ 3 × sin 1 ÷ x.  



2.2 Fourier Series  
Fourier series are special expansions of 2 × π-periodic functions of the form  

(1) f (x) = a_0 + ∑ from n = 1 to ∞ of (a_n × cos n × x + b_n × sin n× x). 

We encountered these expansions in Section 1.2 when we discussed the vibrations of a plucked string. As you will see in the 
following chapters, Fourier series are essential for the treatment of several other important applications. To be able to use 
Fourier series, we need to know  

which functions have Fourier series expansions? and if a function has a Fourier series, how do we compute the coefficients a_0, 
a_1, a_2, ..., b_1, b_2, ...? 

We will answer the second question in this section. As for the first question, its general treatment is well beyond the level of this 
text. We will present conditions that are sufficient for functions to have a Fourier series represen-tation. These conditions are 
simple and general enough to cover all cases of interest to us. We will focus on the applications and defer the proofs concerning 
the convergence of Fourier series to Sections 2.8-2.10.  

Euler Formulas for the Fourier Coefficients  
To derive the formulas for the coefficients that appear in (1), we proceed as Fourier himself did. We integrate both sides of (1) 
over the interval [negative π, π], assuming term-by-term integration is justified, and get  

∫ from negative π to π of f (x) dx = ∫ from negative π to π of a_0 dx + ∫ from negative π to π of (a_n × cos n × x + b_n × sin n × x) 
dx. 

But because ∫ from negative π to π of cos n × x dx = ∫ from negative π to π of sin n × x dx = 0 for n 1, 2, ..., it follows that  

∫ from negative π to π of f (x) dx = ∫ from negative π to π of a_0 dx = 2 × π × a_0, 

or 

a_0 = 1 ÷ 2 × π × ∫ from negative π to π of f (x) dx. 

(Note that a_0 is the average of f on the interval [negative π, π]. For the interpretation of the integral as an average, see Exercise 
6, Section 2.5.) Similarly, starting with (1), we multiply both sides by cos m × x (m ≥ 1), integrate term-by-term, use the 
orthogonality of the trigonometric system (Section 2.1),  



and get  

∫ from negative π to π of f (x) × cos m × x dx = {∫ from negative π to π of a_0 × cos m × x dx} =0 + ∑ from n = 1 to ∞ of {∫ from 
negative π to π of a_n × cos n × x × cos m × x dx} = 0 for m ≠ n + ∑ from n = 1 to ∞ of {∫ from negative π to π of b_n sin n × x × cos 

m × x dx} = 0 

= a_m × {∫ from negative π to π of cos^2 m × x dx} = π = π × a_m. 

Hence  

a_m= 1 ÷ π × ∫ from negative π to π of f (x) × cos m × x dx, (m = 1, 2, ...). 

By a similar procedure,  

b_m = 1 ÷ π × ∫ from negative π to π of f (x) × sin m × x dx, (m = 1, 2, ...). 

The following box summarizes our discussion and contains basic definitions.  

EULER FORMULAS FOR THE FOURIER COEFFICIENTS 

Suppose that f has the Fourier series representation  

f (x)= a_0 + ∑ from n = 1 to ∞ of a_n × cos n × x + b_n × sin n × x). 

Then the coefficients a_0, a_n, and b_n are called the Fourier coefficients off and are given by the following Euler formulas:  

(2) a_0 = 1 ÷ 2× π × ∫ from negative π to π of f (x) dx, 

(3) a_n= 1 ÷ π × ∫ from negative π to π of f (x) × cos n × x dx, (n = 1, 2, ...), 

(4) b_n = 1 ÷ π × ∫ from negative π to π of f (x) × sin n × x dx, (n = 1, 2, ...). 

Because all the integrands in (2)-(4) are 2 × π -periodic, we can use Theorem 1, Section 2.1, to rewrite these formulas using 
integrals over the interval [0, 2 × π] (or any other interval of length 2 × π). Such alternative formulas are sometimes useful.  



ALTERNATIVE EULER FORMULAS 

(5) a_0 = 1 ÷ 2 × π × ∫ from 0 to 2 × π of f (x) dx, 

(6) a_n = 1 ÷ π × ∫ from 0 to 2 × π of f (x) × cos n × x dx, and b_n = 1 ÷ π × ∫ from 0 to 2 × π of f (x) × sin n × x dx, n ≥ 1. 

The Fourier coefficients were known to Euler before Fourier and for this reason they bear Euler's name. Euler used them to 
derive particular Fourier series such as the one presented in Example 1 below. It was Fourier who first claimed that these 
coefficients and series have a much broader range of applications, and, in particular, that they can be used to expand any 
periodic function. Fourier's claim and efforts to justify them led to the development of the theory of Fourier series, which are 
named in his horror.  

For a positive integer N, we denote the Nth partial sum of the Fourier series of f by s_N (x). Thus  

s_N (x) = a_0 + ∑ from n = 1 to N of (a_n × cos n × x + b_n × sin n × x). 

Our first example displays many of the peculiar properties of Fourier series.  

Figure 1 Sawtooth function. 

EXAMPLE 1 Fourier series of the sawtooth function  
The sawtooth function, shown in Figure 1, is determined by the formulas  

f (x) = 1 ÷ 2 × (π − x) if 0 < x ≤ 2 × π, f (x + 2 × π) otherwise. 

(a) Find its Fourier series.  
(b) With the help of a computer, plot the partial sums s_1 (x), s_7 (x), and s_20 (x), and determine the graph of the Fourier 

series.  

Solution  

(a) Using (5) and (6), we have  

a_0 = 1 ÷ 2 × π × ∫ from 0 to 2 × π of f (x) dx = 1 ÷ 2 × π × ∫ from 0 to 2 × π of 1 ÷ 2 × (π – x) dx = 0; 

a_n = 1 ÷ π × ∫ from 0 to 2 × π of 1 ÷ 2 × (π – x) × cos n × x dx 

= 1 ÷ 2 × π × {∫ from 0 to 2 × π of π × cos n × x dx − ∫ from 0 to 2 × π of x × cos n × x dx} = 0; 

In evaluating a_n, we use the formula ∫ x × cos n × x dx = 1 ÷ n ^ 2 × cos n × x + x ÷ n × sin n× x which is obtained by integrating by 
parts.  



b_n = 1 ÷ π × ∫ from 0 to 2 × π of 1 ÷ 2 × (π – x) × sin n × x dx 

= 1 ÷ 2 × π × {∫ from 0 to 2 × π of π × sin n × x dx − ∫ from 0 to 2 × π of x × sin n × x dx} = negative 1 ÷ 2 × π × ∫ from 0 to 2 × π of x 
× sin n × x dx 

= 1 ÷ 2 × π × {negative 1 ÷ n ^ 2 × sin n × x + x ÷ n × cos n × x} from 0 to 2 × π (integration by parts) 

= 1 ÷ 2 × π × 2 × π ÷ n = 1 ÷ n. 

Substituting these values for a_n and b_n into (1), we obtain ∑ from n = 1 to ∞ of sin n × x ÷ n as the Fourier series of f. 

Figure 2 Here the nth partial sum of the Fourier series is s_n (x) = ∑ from k = 1 to n of sin k × x ÷ k. To distinguish the graphs, note 
that as n increases, the frequencies of the sine terms increase. This causes the graphs of the higher partial sums to be more 

wiggly. The limiting graph is the graph of the whole Fourier series, shown in Figure 3. It is identical to the graph of the function, 
except at points of discontinuity.  

(b) Figure 2 shows the first, seventh, and twentieth partial sums of the Fourier series. We see clearly that the Fourier series of f 
converges to f (x) at each point x where f is continuous. In particular, for 0 < x < 2× π, we have  

∑ from n = 1 to ∞ of sin n × x ÷ n = 1 ÷ 2 × (π − x). 

At the points of discontinuity (x = 2 × k × π, k = 0, ±1, ±2, ...), the series converges to 0. The graph of the Fourier series ∑ from n = 
1 to ∞ of sin n × x ÷ n is shown in Figure 3. It agrees with the graph of the function, except at the points of discontinuity. 

Figure 3 The graph of the Fourier series ∑ from n = 1 to ∞ of sin n × x ÷ n coincides with the graph of the function, except at the 
points of the discontinuity. 

Two important facts are worth noting concerning the behavior of Fourier series near points of discontinuity.  

Note 1: At the points of discontinuity (x = 2 × k × π) in Example 1, the Fourier series converges to 0 which is the average value of 
the function from the left and the right at these points.  

Note 2: Near the points of discontinuity, the Fourier series overshoots its limiting values. This is apparent in Figure 2, where 
humps form on the graphs of the partial sums near the points of discontinuity. This curious phenomenon, known as the Gibbs 
(or Wilbraham-Gibbs) phenomenon, is investigated in the exercises. It was first observed by Wilbraham in 1848  



in studying particular Fourier series. In 1899, Gibbs rediscovered this phe-nomenon and initiated its study with the example of 
the sawtooth function. Although Gibbs did not offer complete proofs of his assertions, he did high-light the importance of this 
phenomenon, which now bears his name. For an interesting account of this subject, see the paper "The Gibbs-Wilbraham 
phenomenon: an episode in Fourier analysis," E. Hewitt and R. Hewitt, Archive for the History of Exact Sciences 21 (1979), 129-
160.  

As we will see shortly, these observations are true in a very general sense. Recall that f is piecewise smooth if f and f' are 
piecewise continuous. If f is piecewise continuous, the average (or arithmetic average) of f at c is  

f (c^−) + f (c^+) ÷ 2, 

where f (c^+) = lim as x → c^+ f (x) and f (c^−) = lim as x → c^− f (x). If f is continuous at c, then f (c^+) = f (c^−) = f (c) and so the 
average of f at c is f (c). Thus the notion of average will be of interest only at points of discontinuity.  

The function in Figure 4 has a discontinuity at x = 1. Its average there is 1 – 1 ÷ 2 ÷ 2 = 3 ÷ 4. 

As a further illustration, you should check that the average of the saw-tooth function (Figure 1) at all the points of discontinuity 
is 0.  

We can now state a fundamental result in the theory of Fourier series.  

Figure 4 Average of f (x) at x = 1 

THEOREM 1 FOURIER SERIES REPRESENTATION  
Suppose that f is a 2 × π-periodic piecewise smooth function. Then for all x we have 

(7) f (x^+) + f (x^−) ÷ 2 = a_0 + ∑ from n = 1 to ∞ of (a_n × cos n × x + b_n × sin n × x), 

where the Fourier coefficients a_0, a_n, b_n are given by (2)-(4). In particular, if f is piecewise smooth and continuous at x, then 

(8) f (x) = a_0 + ∑ from n = 1 to ∞ of (a_n × cos n × x + b_n × sin n × x). 

Thus, at a point of continuity of a piecewise smooth function the Fourier series converges to the value of the function. At a point 
of discontinuity, the Fourier series does its best to converge, and having no reason to favor one side over the other, it converges 
to the average of the left and right limits (see Figure 5).  

We note that in (7) the value of the Fourier series of f at a given point x does not depend on f(x), but on the limit of f from the 
left and right at  



x. For this reason, we may define (or redefine) f at isolated points without affecting its Fourier series. This is illustrated by the 
behavior of the Fourier series in Example 1, where at the points of discontinuity we could have assigned any values for the 
function without affecting the behavior of the Fourier series. If we redefine the function at points of discontinuity to be f (c^−) + 
f (c^+) ÷ 2, we then have the equality  

f(x) = a_0 + ∑ from n = 1 to ∞ of (a_n × cos n × x + b_n × sin n × x) 

holding at all x. We will often assume such a modification at the points of discontinuity and not worry about the more precise, 
but cumbersome, equality (7).  

We will present the complete proof of Theorem 1 in Section 2.8. The proof is a nice combination of ideas from Fourier series and 
basic tools from calculus. Further topics related to the convergence of Fourier series are presented in Sections 2.9 and 2.10.  

It is important to keep in mind that continuity off alone is not enough to ensure the convergence of its Fourier series. Although 
we will not encounter such functions, there are continuous functions with Fourier series that di-verge at an infinite number of 
points in [O, 27r]. But, as our next example illustrates, if f is continuous and piecewise smooth, then its Fourier series will in fact 
converge uniformly to f. For a proof of this fact, see Section 2.9 where we study uniform convergence in detail.  

Figure 5  

(a) a piecewise smooth function, 
(b) its Fourier series. 

EXAMPLE 2 Triangular wave  
The 2 × π-periodic triangular wave is given on the interval [negative π, π] by  

g (x) = π +x if negative π ≤ x ≤ 0, π − x if 0 ≤ x ≤ π. 

(a) Find its Fourier series.  
(b) Plot some partial sums and the Fourier series.  

Solution  

From Figure 6 we see that g (x) is piecewise smooth and continuous for all x (g' (x) does not exist at x =k × π). So, from the 
second part of Theorem 1, we expect the Fourier series to converge to g (x) for all x. Using (2), we have  

a_0 = 1 ÷ 2 × π × ∫ from negative π to π of g (x) dx = 1 ÷ 2 × π × π ^ 2 = 1 ÷ 2 × π. 

Figure 6 Triangular wave. 

(This is the area of the triangular region in Figure 6 with base [negative π, π] divided by  



2 × π.) Using (3), we have  

a_n = 1 ÷ π × ∫ from negative π to 0 of (π + x) × cos n × x dx + 1 ÷ π × ∫ from 0 to π of (π − x) × cos n × x dx 

= 2 ÷ π × ∫ from 0 to π of (π − x) × cos n × x dx (change x to negative x in the first integral) 

= 2 ÷ π × {1 ÷ n ^ 2 – cos n × π ÷ n ^ 2} (integration by parts). 

Since cos π × r = (negative 1) ^ n, we see that a_n = 0 if n is even, and a_n = 4 ÷ π × n ^ 2 if n is odd. Finally, using (4), we find  

b_n = 1÷ π × ∫ from negative π to π of {g (x) × sin n × x dx} odd function = 0, 

since we are integrating an odd function over a symmetric interval. Now Theorem 1 implies that  

g (x) = 1 ÷ 2 × π + ∑ from off of 4 ÷ π × n ^ 2 × cos n × x = 1 ÷ 2 × π +4 ÷ π × ∑ from k = 0 to ∞ of 1 ÷ (2 × k + 1) ^ 2 × cos (2 × k + 1) 
× x 

for all x. Since the function and its Fourier series are equal at all points, their graphs coincide (compare Figures 6 and 8).  

The partial sums of the Fourier series, illustrated in Figure 7, are converging very fast, much faster than those in Example 1. This 
is due to the magnitudes of the Fourier coefficients. In Example 1 the coefficients are of the order 1 ÷ n, while in Example 2 the 
coefficients are of the order 1 ÷ n ^ 2.  

Figure 7 Partial sums of the Fourier series.  

Figure 8 The Fourier series  

In (9), letting k run from 0 to 1, 2, and 5, respectively, we generate the third, fifth, and eleventh partial sums of the Fourier 
series. These are plotted in Figure 7. Comparing Figure 7 to Figure 2, we note one major difference. While in both cases the 
partial sums are converging to the limit functions, the partial sums in Figure 7 are approaching g(x) at the same rate for all x. This 
is what uniform convergence means. It is a result of the fact that g (x) is continuous and piecewise smooth. The partial sums in 
Figure 2 do not have this property.  

To illustrate the power of Theorem 1, we present a simple application that yields a remarkable identity.  



EXAMPLE 3 Using Fourier series to sum series  
If we take x = 0 on both sides of (9), we get  

π = g (0) = 1 ÷ 2 × π + 4 ÷ π × ∑ from k = 0 to ∞ of 1 ÷ (2 × k + 1) ^ 2. 

Subtracting 1 ÷ 2 × π from both sides and then multiplying by π ÷ 4 we get the interesting identity  

π ^ 2÷ 8 = 1 + 1 ÷ 3 ^ 2 + 1 ÷ 5 ^ 2 + 1 ÷ 7 ^ 2 + ..., 

which can be used to approximate π ^ 2 (and hence also π). 

Operations on Fourier Series  
The Fourier series in Examples 1 and 2 are special in the sense that one is an odd function and contains only sine terms, while 
the other one is an even function and contains only cosine terms. Fourier series of this type will be studied in detail in the next 
two sections. Our next examples involve Fourier series that contain both sine and cosine terms. We will derive these series 
without computing Fourier coefficients but by applying operations such as multiplying a Fourier series by a constant, adding two 
Fourier series, changing variables (x to negative x), and translating. These simple operations are very useful in deriving new 
Fourier series from known ones.  

EXAMPLE 4 Linear combinations of Fourier series 
The 2 × π-periodic function 

h (x) = π – x if 0 < x ≤ π, 0 if π < x < 2 × π 

is related to the functions in Examples 1 and 2 by h (x) = f (x) + 1 ÷ 2 × g (x). This can be verified by using the formulas for f and g 
or directly by adding the graphs in Figures 1 and 6 and comparing with the graph in Figure 9. To compute the Fourier series of h, 
we can use the Euler formulas, or better yet we can simply form the appropriate linear combination of the Fourier series of 
Examples 1 and 2, as follows: 

h (x) = f (x) + 1 ÷ 2 × g (x) 

= {∑ from n = 1 to ∞ of sin n × x ÷ n} = f (x) + {π ÷ 4 + 1 ÷ π × ∑ from n = 1 to ∞ of (1 ÷ n ^ 2 – (negative 1) ^ n ÷ n ^ 2) × cos n × x} = 
1 ÷ 2 × g (x) 

= π ÷ 4 + ∑ from n = 1 to ∞ of {1 ÷ π × (1 ÷ n ^ 2 – (negative 1) ^ n ÷ n ^ 2) × cos n × x + sin n × x ÷ n} 

Figure 9 The function in Example 4.  

The convergence of the partial sums of the Fourier series to h (x) is illustrated in Figure 10. Note the Gibbs phenomenon near 
the points of discontinuity, x = 2 × k × π,  



k an integer. At these points, the Fourier series converges to the average value π ÷ 2. At all other points, the Fourier series 
converges to h (x).  

Figure 10 Note the Gibbs phenomenon at the points of discontinuity (x = 2 × k × π). This is due to the fact that the Fourier series 
consists of a cosine part that is converging very fast (Figure 7) and a sine part that overshoots at the points of discontinuity.  

The previous example illustrates the linearity of Fourier series (see Exercise 23). The following examples illustrate changing 
variables and translating a Fourier series (see Exercise 24).  

EXAMPLE 5 Changing variables and translating  
(a) The graph of the function k (x) in Figure 11 is obtained by reflecting through the y-axis the graph in Figure 9 and then 
translating by π units to the left or right. Thus k (x) = h (negative x – π) and the Fourier series representation of k (x) is 

k (x) = h (negative x – π) = π ÷ 4 + ∑ from n = 1 to ∞ of {1 ÷ π × (1 ÷ n ^ 2 – (negative 1) ^ n ÷ n ^ 2) × cos n × (negative x – π) + sin 
n × (negative x – π) ÷ n} 

But cos n × (negative x – π) = (negative 1) ^ n × cos n × x and sin n × (negative x – π) = (negative 1) ^ n + 1 × sin n × x. So  

k (x) = π ÷ 4 + ∑ from n = 1 to ∞ of {1 ÷ π × ((negative 1) ^ n ÷ n ^ 2 – 1 ÷ n ^ 2) × cos n × x + (negative 1) ^ n + 1 × sin n × x ÷ n} 

Figure 11 the function in Example 5 (a). 

(b) The square wave w (x) in Figure 12 is the sum of the functions h (x) and k (x), as can be verified directly by adding the graphs 
in Figures 9 and 11. Using the Fourier series of h and k and the relation w (x) = h (x) + k (x), we obtain the Fourier series 
representation of the square wave 

w (x) = π ÷ 2 + ∑ from n = 1 to ∞ of (1 + (negative 1) ^ n + 1) × sin n × x ÷ n = π ÷ 2 + 2 × ∑ from n = 1 to ∞ of sin (2 × k + 1) × x ÷ 2 
× k + 1. 

Of course you can derive this Fourier series by using the Euler formulas and the explicit formula 

w (x) = π if 0 < x < π, 0 if π < x < 2 × π. 

The approach that we took shows you a relationship between various Fourier series and thus gives you a way to compare their 
rates of convergence. 

Figure 12 Square wave in Example 5(b). 



Exercises 2.2  
In Exercises 1-4, a 2 × π-periodic function is specified on the 
interval [negative π, π].  

(a) Plot the function on the interval [negative 3 × π, 3 × 
π].  

(b) Plot its Fourier series (without computing it) on the 
interval [negative 3 × π, 3 × π]. 

1. 

2. 

3. 

4. 

In Exercises 5-16, the equation of a 2 × π-periodic function is 
given on an interval of length 2 × π. You are also given the 
Fourier series of the function.  

(a) Derive the given Fourier series.  
(b) Plot the function and the Nth partial sums of its 

Fourier series for N = 1, 2, ..., 20. Discuss the 
convergence of the partial sums by considering 
their graphs. Be specific at the points of 
discontinuity.  

5.  

f (x) = |x| if negative π < x < π. Fourier series: π ÷ 2 – 4 ÷ π × 
∑ from k = 0 to ∞ of 1 ÷ (2 × k + 1) ^ 2 × cos (2 × k + 1) ×.  

6. 

f (x) = 1 if 0 < x < π ÷ 2, negative 1 if negative π ÷ 2 < x < 0, 0 
if π ÷ 2 < |x| < π. Fourier series: 2 ÷ π × ∑ from n = 1 to ∞ of 
1 ÷ n × (1 – cos n × π ÷ 2) × sin n × x.  

7.  

f (x) = |sin x| if negative π ≤ x ≤ π. Fourier series: 2 ÷ π − 4 ÷ 
π × ∑ from k = 1 to ∞ of 1 ÷ (2 × k) ^ 2 – 1 × cos 2 × k × x.  

8.  

f (x) = |cos x| if negative π ≤ x ≤ π. Fourier series: 2 ÷ π − 4 ÷ 
π × ∑ from k = 1 to ∞ of (negative 1) ^ k ÷ (2 × k) ^ 2 – 1 × 
cos 2 × k × x. 

[Hint: You can compute directly, or, if you have done 
Exercise 7, substitute x – π ÷ 2 for x.]  

9.  

f (x) = x ^ 2 if negative π ≤ x ≤ π. Fourier series: π ^ 2 ÷ 3 + 4 
× ∑ from n = 1 to ∞ of (negative 1) ^ n ÷ n ^ 2 × cos n × x. 

10.  

f (x) = 1 − sin x + 3 × cos 2 × x. Fourier series: same as f (x).  

11.  

f (x) = sin^2 x; f (x) = cos^2 x. Fourier series: 1 ÷ 2 – cos 2 × x 
÷ 2; Fourier series: 1 ÷ 2 + cos 2 × x ÷ 2. 



12.  

f(x)= π ^ 2 × x – x ^ 3 if negative π < x < π. Fourier series: 12 
× ∑ from n = 1 to ∞ of (negative 1) ^ n + 1 ÷ n ^ 3 × sin n × x.  

13.  

f(x) = x if negative π < x < π. Fourier series: 2 × ∑ from n = 1 
to ∞ of (negative 1) ^ n + 1 ÷ n × sin n × x.  

[Hint: Let x= π − t Example 1.] 

14.  

For parts (a) and (b), take c, d > 0 and d < π. For part (c), 
take c = d = π ÷ 2. 

f (x) = 0 if negative π ≤ x ≤ negative d, c ÷ d × (x + d) if 
negative d ≤ x ≤ 0, negative c ÷ d × (x – d) if 0 ≤ x ≤ d, 0 if d ≤ 
x ≤ π. Fourier series: c × d ÷ 2 × π + 4 × c ÷ d × π × ∑ from n = 
1 to ∞ of sin^2 (d × n ÷ 2) ÷ n ^ 2× cos n × x. 

15.  

f (x) = e ^ negative |x| if negative π < x < π. 

Fourier series: e ^ π − 1 ÷ π × e ^ π + 2 ÷ π × e ^ π × ∑ from n 
= 1 to ∞ of 1 ÷ n ^ 2 + 1 × (e ^ π – (negative 1) ^ n) × cos n × 
x. 

16.  

f (x) = 1 ÷ (2 × c) if |x – d| < c, 0 if c < |x – d| < π, where 0 < c 
< π and d is arbitrary. Fourier series: 1 ÷ 2 × π + 1 ÷ c × π × ∑ 
from n = 1 to ∞ of (sin (n × c) × cos (n × d) ÷ n × cos n × x + 
sin (n × c) × cos (n × d) ÷ n × sin n × x). 

For part (c), take c = d = π ÷ 4. 

17.  

Use the Fourier series of Exercise 9 to obtain  

π ^ 2 ÷ 6 = 1 + 1 ÷ 2 ^ 2 + 1 ÷ 3 ^ 2 + 1 ÷ 4 ^ 2 + … 

18.  

Use the Fourier series of Exercise 13 to obtain  

π ÷ 4 = 1 – 1 ÷ 3 + 1 ÷ 5 – 1 ÷ 7 + … 

Figure 13  

Figure 14  

Figure 15  

19.  

Derive the Fourier series of the given function as indicated, 
without computing its Fourier coefficients.  

(a) The function in Exercise 1, by using the Fourier 
series of the square wave in  



Example 5.  

(b) The function in Exercise 2, by using the preceding 
part (a).  

(c) The function in Figure 13, by using the Fourier series 
from (a).  

(d) The function in Exercise 3, by using the preceding 
part (c).  

20.  

(a) Derive the Fourier series of the function in Figure 14 
by using the Fourier series in Exercise 7. [Hint: 
Consider the function sin x.] 

(b) Derive the Fourier series of the function in Figure 
15.  

21.  

(a) Let f (x) be the 2 × π-periodic function shown in 
Figure 16 over the interval [negative π, π]. Use the 
Euler formulas to find its Fourier series.  

(b) Plot the function g (x) = f (negative x) and find its 
Fourier series.  

Figure 16 for Exercise 21. 

22.  

Find the Fourier series of the function in Exercise 4 by 
combining the results of Exercises 19 (c) and 21.  

23. Linearity of Fourier coefficients and 
Fourier series.  

Let α and β be any real numbers. Show that if f and g have 
Fourier coefficients a_0, a_1, a_2, ..., b_1, b_2, ..., 
respectively, a_0^*, a_1^*, a_2^*, ..., b_1^*, b_2^*, ..., 
then the function α × f + β × g has Fourier coefficients α × 
a_0 + β × a_0^*, α × a_1 + β × a_1^*, α × a_2 + β × a_2^*, 
…, α × b_1 + β × b_1^*, α × b_2 + β × b_2^*, … 

24. Reflecting and translating a Fourier series.  

Suppose that f is 2 × π-periodic and let g (x) = f (negative x) 
and h (x) = f (x − α), where a is a fixed real number. To 
distinguish Fourier coefficients, we will use a (f, n) and b (f, 
n) instead of a_n and b_n to denote the Fourier coefficients 
of f.  

(a) Show that a (f, 0) = a (g, 0), a (f, n) = a (g, n), and b (f, n) = 
negative b (g, n) for all n ≥ 1.  

(b) Show that a (f, 0) = a (h, 0), a (h, n) = a (f, n) × cos n × α – 
b (f, n) × sin n × α and b (h, n) = a (f, n) × sin n × α + b (f, n) × 
cos n × α for all n ≥ 1.  

Gibbs Phenomenon  

Project Problem:  

Do Exercises 25-27 to investigate the Gibbs phenomenon 
for the sawtooth function.  

25.  

Consider the 2 × π-periodic function of Example 1.  

(a) Sketch the graphs of f and its Nth partial sums s_N 
(x) for N = 5, 10, 15, on the interval negative π < x < 
3 × π.  

(b) To see how well the partial sums approximate f, 
sketch the graphs of |f − s_N| for N = 5, 10, 15.  

(c) Note that near x = 0 and x = 2 × π (points of 
discontinuity of f) the partial sums overshoot the 
values of f (x) by a certain positive amount. By 
analyzing the graphs of |f (x) – s_N (x)| for N = 5, 
10, 15, …, show that this amount is approximately 
.28.  

26.  

Consider the partial sums of the Fourier series of the 
sawtooth function,  

s_N (x) = ∑ from n = 1 to N of sin n × x ÷ n. 

(a) Take x = π ÷ N, and show that s_N (π ÷ N) = ∑ from n 
= 1 to N of π ÷ N × sin (n × π ÷ N) ÷ n × π ÷ N. 

(b) Conclude that s_N (π ÷ N) → ∫ from 0 to π of sin x ÷ 
x dx, as N → ∞. 

[Hint: Approximate the integral by Riemann sums as those 
in (a).]  



(c) Obtain the Taylor series expansion  
sin x ÷ x = ∑ from n = 0 to ∞ of (negative 1) ^ n × x ^ 
2 × n ÷ (2 × n + 1)! (negative ∞ < x< ∞). 

(d) Integrate the series in (c) term by term, and use the 
alternating series test to obtain the inequalities  
1.85 < ∫ from 0 to π of sin x ÷ x dx < 1.86.  

(e) Conclude that lim as N → ∞ of |[f (π ÷ N) – s_N (π ÷ 
N)| exists and is approximately .27.  

(f) Plot the graphs of f (x) and s_N (x) (N = 1, 2, ..., 7) 
and notice that, for every N, there is a hump on the 
graph at x = π ÷ N + 1. The hump moves to the left 
as N → ∞. Does this contradict Theorem 1? Explain.  

27.  

Refer to the function in Example 1. Without repeating the 
proof in Exercise 26, describe the Gibbs phenomenon at x = 
2 × π. That is, estimate its size, and decide where the 
overshoot of s_N (x) occurs.  

28. Project Problem:  

Consider the 2 × π-periodic function f (x) = x if negative π < x 
< π. From Exercise 13, we have the Fourier series  

x = 2 × ∑ from n = 1 to ∞ of (negative 1) ^ n + 1 × sin n × x ÷ 
n, negative π < x < π. 

In this exercise we will study the Gibbs phenomenon at the 
point x = π. We will proceed as in Exercise 26 and make the 
necessary modifications. 

(a) Take x = π – π ÷ N, and show that s_N (π – π ÷ N) = 2 × ∑ 
from n = 1 to N of π ÷ N × (N ÷ n × π) × sin (n × π ÷ N). 

(b) Conclude that s_N (π – π ÷ N) → 2 × ∫ from 0 to π of sin x 
÷ x dx, as N → ∞. 

(c) Show that lim as N → ∞ of |f (π – π ÷ N) – s_N (π – π ÷ 
N)| exist and is approximately .56. 

(d) Illustrate the Gibbs phenomenon on the graph of s_N (x), 
relative to the graph of f. In particular, show graphically 
that, for every N, there is a hump on the graph at x = π – π ÷ 
N that moves to the right as N → ∞

2.3 Fourier Series of Functions with Arbitrary Periods  
In the preceding section we worked with functions of period 2 × π. The choice of this period was merely for convenience. In this 
section, we show how to extend our results to functions with arbitrary period (Figure 1) by using a simple change of variables.  

Suppose that f is a function with period T = 2 × p > 0, and let  

(1) g (x)= f (p ÷ π × x). 

Since f is 2 × p-periodic, we have  

g (x + 2 × π) = f (p ÷ π × (x + 2 × π) = f (p ÷ π × x + 2 × p) = f (p ÷ π × x) = g (x). 

Figure 1 A 2 × p-periodic function.  



Hence g is 2 × π-periodic. This reduction enables us to extend the main results of Section 2.2 to functions of arbitrary period.  

THEOREM 1 FOURIER SERIES REPRESENTATION: ARBITRARY PERIOD  
Suppose that f is a 2 × p-periodic piecewise smooth function. The Fourier series of f is given by 

(2) a_0 + ∑ from n = 1 to ∞ of (a_n × cos n × π ÷ p × x + b_n × sin n × π ÷ p × x) 

where 

(3) a_0 = 1 ÷ 2 × p × ∫ from negative p to p of f (x) dx, 

(4) a_n = 1 ÷ p × ∫ from negative p to p of f (x) × cos n × π ÷ p × x dx (n = 1, 2, …), 

(5) b_n = 1 ÷ p × ∫ from negative p to p of f (x) × sin n × π ÷ p × x dx (n = 1, 2, …). 

The Fourier series converges to f(x) if f is continuous at x and to f (x^−) + f (x^+) ÷ 2 otherwise. 

By Theorem 1, Section 2.1, all the integrals ∫ from negative p to p can be replaced by ∫ from 0 to 2 × p without changing the 
values of the coefficients.  

Proof  

Since f is piecewise smooth, it follows that the 2 × π-periodic function g defined by (1) is also piecewise smooth. By Theorem 1 of 
Section 2.2, we have  

(6) g (x^−) + g (x^+) ÷ 2 = a_0 + ∑ from n = 1 to n of (a_n × cos n × x + b_n × sin n × x), (for all x) 

where  

(7) a_0 = 1 ÷ 2 × π × ∫ from negative π to π of g (x) dx, a_n = 1 ÷ π × ∫ from negative π to π of g (x) × cos n × x dx; b_n = 1 ÷ π × ∫ 
from negative π to π of g(x) × sin n × x dx. 

Replacing x by π ÷ p × x in (6) and using (1) gives  

(8) f (x^−) + f (x^+) ÷ 2 = a_0 + ∑ from n = 1 to n of (a_n × cos n × π ÷ p × x + b_n × sin n × π ÷ p × x) 

where the coefficients are given by (7). To express the coefficients in terms of f as in (3)-(5), we use (1) again. For example, to 
obtain (3), start with the first formula in (7), use (1), then use the change of variables t = p ÷ π × x, and get  

a_0 = 1 ÷ 2 × π × ∫ from negative π to π of g (x) dx = 1 ÷ 2 × π × ∫ from negative π to π of f (p ÷ π × x) dx = 1 ÷ 2 × p × ∫ from 
negative p to p of f (t) dt. 

Formulas (4) and (5) a.re derived in a similar way. The details are left to the exercises.  



EXAMPLE 1 A Fourier series with arbitrary period  
Find the Fourier series of the 2 × p-periodic function given by f (x) − |x| if negative p ≤ x ≤ p (Figure 2).  

Figure 2 Triangular wave with period 2 × p. 

Solution  

We compute the Fourier coefficients using Theorem 1. The area under the graph of f in Figure 2 gives  

a_0 = 1 ÷ 2 × p × ∫ from negative p to p of f (x) dx = p ÷ 2. 

To compute a_n we take advantage of the fact that f (x) cos n × π ÷ p × x is an even function and write 

a_n = 1 ÷ p × ∫ from negative p to p of f (x) × cos n × π ÷ p × x dx = 2 ÷ p × ∫ from 0 to p of f (x) × cos n × π ÷ p × x dx 

= 2 ÷ p × ∫ from 0 to p of x × cos n × π ÷ p × x dx = negative 2 × p ÷ π ^ 2 × n ^ 2 × (1 – cos n × π), 

where the last integral is evaluated by parts. Since cos n × π = (negative 1) ^ n, a_n = 0 if n is even, and a_n = negative 4 × p ÷ π ^ 
2 × n ^ 2 if n is odd. A similar computation shows that b_n = 0 for all n (since f is even). We thus obtain the Fourier series  

f (x) = p ÷ 2 – 4 × p ÷ π ^ 2 × (cos π ÷ p × x + 1 ÷ 3 ^ 2 × cos 3 × π ÷ p × x + 1 ÷ 5 ^ 2 × cos 5 × π ÷ p × x + …). 

Because f is continuous and piecewise smooth, Theorem 1 implies that the Fourier series converges to f(x) for all x. (See Figure 
3.)  

Figure 3 Partial sums of the Fourier series (p = 1), in Example 1. 

In the following two examples, we derive new Fourier series from known ones without performing too many additional 
computations. 

EXAMPLE 2 Triangular wave with arbitrary period and amplitude  
Find the Fourier series of the 2p-periodic function given by  

g (x) = a × (1 + 1 ÷ p × x) if negative p ≤ x ≤ 0, a × (1 – 1 ÷ p × x) if 0 ≤ x ≤ p. 

Solution  

Comparing Figures 4 and 2 shows that we can obtain the graph of g by reflecting the graph of f in the x-axis, translating it 
upward by p units, and then scaling it by a factor of a ÷ p. This is expressed by writing  

g (x) = a ÷ p × (negative f (x) + p) =a – a ÷ p × f (x). 

Now to get the Fourier series of g, all we have to do is perform these operations on the Fourier series of f from Example 1. We 
get  

g (x) = a – a × (1 ÷ 2 – 4 ÷ π ^ 2 × (cos π ÷ p × x + 1 ÷ 3 ^ 2 × cos 3 × π ÷ p × x + 1 ÷ 5 ^ 2 × cos 5 × π ÷ p × x + …)) 

= a ÷ 2 + 4 × a ÷ π ^ 2 × (cos π ÷ p × x + 1 ÷ 3 ^ 2 × cos 3 × π ÷ p × x + 1 ÷ 5 ^ 2 × cos 5 × π ÷ p × x + …). 

Figure 4 A 2 × p-periodic triangular wave.  



ln compact form, we have  

g (x) = a ÷ 2 + 4 × a ÷ π ^ 2 × ∑ from k = 0 to ∞ of 1 ÷ (2 × k + 1) ^ 2 × cos (2 × k + 1 ) × π ÷ p × x. 

(You should check that the special case with p = a = π yields the Fourier series of Example 2 of the previous section.)  

Changing variables as we did at the outset of the section can be very useful in deriving new Fourier series from known ones.  

EXAMPLE 3 Varying the period in a Fourier series  
Find the Fourier series of the function in Figure 5.  

Figure 5 A 2 × p-periodic sawtooth function. 

Solution  

Let us start by defining the function in Figure 5. On the interval 0 < x < 2 × p, we have f (x) = c × (1 – x ÷ p). Now, from Example 1, 
Section 2.2, we have the Fourier series expansion  

1 ÷ 2 × (π − x) = ∑ from n = 1 to ∞ of sin n × x ÷ n, for 0 < x < 2 × π 

Replacing x by π ÷ p × x in the formula and the interval for x, we get  

1 ÷ 2 × (π − π ÷ p × x) = ∑ from n = 1 to ∞ of sin n × π ÷ p × x ÷ n, for 0 < π ÷ p × x < 2 × π 

Simplifying and multiplying both sides by 2 × c ÷ π to match the formula for f, we get  

c × (1 – x ÷ p) = 2 × c ÷ π × ∑ from n = 1 to ∞ of sin n × π ÷ p × x ÷ n, for all 0 < x < 2 × p 

which yields the Fourier series of f.  

Continuing the operations on Fourier series that we started in the previ-ous section, Examples 2 and 3 are based on the fact that 
a Fourier series is really a function and can be manipulated as such. However, when you work with a formula involving a Fourier 
series, you must keep in mind the interval on which this formula is valid. In particular, when you perform a change of variables 
on a Fourier series, it may affect the interval on which the resulting series is defined. This was the case when we performed a 
change of variables in Example 3.  



Even and Odd Functions  
As we noticed already, geometric considerations are helpful in computing Fourier coefficients. This is particularly the case when 
dealing with even and odd functions.  

A function f is even if f (negative x) = f (x) for all x. 

A function f is odd if f (negative x) = negative f (x) for all x. 

Figure 6  

(a) Even function: The graph is symmetric with respect to the y-axis.  
(b) Odd function: The graph is symmetric with respect to the origin. 

It is clear from Figure 6 (a) (or by a simple change of variables) that if f is even, then  

(9) ∫ from negative p to p of f (x) dx = 2 × ∫ from 0 to p of f (x) dx; 

and if f is odd (Figure 6 (b)), then  

(10) ∫ from negative p to p of f (x) dx = 0. 

The following useful properties concerning the products of these functions are easily verified.  

(Even) × (Even) = Even 

(Even) × (Odd) = Odd 

(Odd) × (Odd) = Even 

These product properties can be used to simplify finding the Fourier coefficients of even and odd functions, as we now show.  



THEOREM 2 FOURIER SERIES OF EVEN AND ODD FUNCTIONS  
Suppose that f is 2 × p-periodic and has the Fourier series representation (2). Then (i) f is even if and only if b_n = 0 for all n. In 
this case  

f (x) a_0 + ∑ from n = 1 to ∞ of a_n × cos n × π ÷ p × x, 

where 

a_0 = 1 ÷ p × ∫ from 0 to p of f (x) dx, and a_n = 2 ÷ p × ∫ from 0 to p of f (x) × cos n × π ÷ p × x dx (n = 1, 2, …). 

(ii) f is odd if and only if a_n = 0 for all n. In this case  

f (x) = ∑ from n = 1 to ∞ of b_n × sin n × π ÷ p × x, 

where  

b_n = 2 ÷ p × ∫ from 0 to p of f (x) × sin n × π ÷ p × x dx (n = 1, 2, …). 

Proof 

(i) If f (x) = a_0 + ∑ from n = 1 to ∞ of a_n × cos n × π ÷ p × x, then, for all x, 

f (negative x) = a_0 + ∑ from n = 1 to ∞ of a_n × cos (negative n × π ÷ p × x) = a_0 + ∑ from n = 1 to ∞ of a_n × cos n × π ÷ p × x = f 
(x), 

and so f is even. Conversely, suppose that f is even. Use (10) and the fact that f (x) = sin n × π ÷ p × x is odd to get that b_n = 0 for 
all n. Use (3), (4), (9), and the fact that f (x) × cos n × π ÷ p × x is even to get the formulas for the coefficients in (i). The proof of 
(ii) is similar and is left as an exercise.  

EXAMPLE 4 Fourier series of an even function  
Find the Fourier series of the 2-periodic function f (x) = 1 – x ^ 2 if negative 1 < x < 1.  

Figure 7 An even function.  

Solution  

The function f is even (see Figure 7); hence b_n = 0 for all n. To compute the a_n's, we use Theorem 2 with p = 1 and get  

a_0 = ∫ from 0 to 1 of (1 − x ^ 2) dx = 2 ÷ 3; 

and  

a_n = 2 × ∫ from 0 to 1 of (1 – x ^ 2) × cos n × π × x dx = negative 2 × ∫ from 0 to 1 of x ^ 2 × cos n × π × x dx = negative 4 × 
(negative 1) ^ n ÷ π ^ 2 × × n ^ 2. 

In computing the last integral we used the formula  

∫ x ^ 2 × cos n × π × x dx = 2 × x × cos n × π × x ÷ π ^ 2 × n ^ 2 − 2 × sin n × π × x ÷ π ^ 3 × n ^ 3 + x ^ 2 × sin n× π × x ÷ π × n + C, 



which can be derived by two integrations by parts. Since f is continuous and piecewise smooth, we get  

f (x) = 2 ÷ 3 – 4 ÷ π ^ 2 × ∑ from n = 1 to ∞ of (negative 1) ^ n ÷ n ^ 2 × cos n × π × r, 

for all x. Figure 8 illustrates the convergence of the Fourier series to f. 

Figure 8 Partial sums of the Fourier series in Example 4.  

EXAMPLE 5 Fourier series of an odd function 
The function f(x) = x × cos x, if negative π ÷ 2 < x < π ÷ 2, and f (x + π) = f (x) otherwise, is shown in Figure 9. It is π-periodic and 
odd. From Theorem 2, its Fourier series is given by 

∑ from n = 1 to ∞ of b_n × sin 2 × n × x, 

where 

b_n = 4 ÷ π × ∫ from 0 to π ÷ of x × cos x × sin 2 × n × x dx. 

In evaluating this integral, we will need the addition formula 

cos a × sin b = 1 ÷ 2 × [sin (a + b) – sin (a – b)], 

and the integral formula 

∫ u × sin u du = sin u – u × cos u + C. 

Figure 9 The odd function in Example 5.  

Computing with the help of these formulas, we find 

b_n = 2 ÷ π × ∫ from 0 to π ÷ 2 of x × (sin (2 × x + 1) × x + sin (2 × n – 1) × x) dx 

= 2 ÷ π × (2 × n + 1) ^ 2 × (sin (2 × n + 1) × x – (2 × n + 1) × x × cos (2 × n + 1) × x from 0 to π ÷ 2 + 2 ÷ π × (2 × n − 1) ^ 2 × (sin (2 × n 
− 1) × x – (2 × n − 1) × x × cos (2 × n − 1) × x from 0 to π ÷ 2 

= 2 ÷ π × (2 × n + 1) ^ 2 × (sin (2 × n + 1) × π ÷ 2 + 2 ÷ π × (2 × n + 1) ^ 2 × (sin (2 × n − 1) × π ÷ 2 

= 2 ÷ π × (negative 1) ^ n × [1 ÷ (2 × n + 1) ^ 2− 1 ÷ (2 × n – 1) ^ 2] (since sin (2 × n + 1) × π ÷ 2 = (negative 1) ^ n and sin (2 × n − 1) 
× π ÷ 2 = (negative 1) ^ n + 1 

= 16 ÷ π × (negative 1) ^ n + 1 × n ÷ (2 × n + 1) ^ 2 × (2 × n – 1) ^ 2. 

Thus  

f (x) = 16 ÷ π × [1 ÷ 9 × sin 2 × x – 2 ÷ 225 × sin 4 × x + ...] 

Figure 10 Graphs of f (x), s_2 (x) and s_4 (x) in Example 5. 



Figure 10 illustrates the convergence of the Fourier series to f (x). Along with f (x), we have plotted the partial sums s_2 (x) and 
s_4 (x). The graphs of s_4 (x) and f (x) can hardly be distinguished from one another, which suggests that the Fourier series 
converges very fast to f (x). 

In the next section we use Fourier series of even and odd functions to periodically extend functions that are defined on finite 
intervals. As we will see in Chapter 3, this process will be needed in solving partial differential equations by means of Fourier 
series. 

Exercises 2.3  
In Exercises 1-10, a 2 × p-periodic function is given on an 
interval of length 2 × p.  

(a) State whether the function is even, odd, or neither.  
(b) Derive the given Fourier series, and determine its 

values at the points of discontinuity. (Most of these 
Fourier series can be derived from earlier examples 
and exercises, as illustrated by Examples 2 and 3.)  

1.  

f (x) = 1 if 0 < x < p, negative 1 if negative p < x < 0. Fourier 
series: 4 ÷ π × ∑ from k = 0 to ∞ of 1 ÷ (2 × k + 1) × sin (2 × k 
+ 1) × π ÷ p × x. 

2.  

f (x) = x if negative p < x < p. [Hint: Exercise 13, Section 2.2.] 
Fourier series: 2 × p ÷ π × ∑ from n = 1 to ∞ of (negative 1) ^ 
n + 1 ÷ n × sin (n × π ÷ p × x). 

3.  

f (x) = a × (1 – (x ÷ p) ^ 2) if negative p ≤ x ≤ p, (a ≠ 0). Fourier 
series: 2 ÷ 3 × a + 4 × a × ∑ from n = 1 to ∞ of (negative 1) ^ 
n + 1 ÷ (n × π) ^ 2 × cos (n × π ÷ p ^ x). 

4.  

f (x) = x ^ 2 if negative p ≤ x ≤ p. [Hint: Use Exercise 3.] 
Fourier series: p ^ 2 ÷ 3 – 4 × p ^ 2 ÷ π ^ 2 × [cos (π ÷ p × x) – 
1 ÷ 2 ^ 2 × cos (2 × π ÷ p × x) + 1 ÷ 3 ^ 2 × cos (3 × π ÷ p × x) − 
…]. 



5.  

f (x) = negative 2 × c ÷ p × (x – p ÷ 2) if 0 ≤ x ≤ p, 2 × c ÷ p × (x 
+ p ÷ 2) if negative p ≤ x ≤ 0, where c ≠ 0 (in the picture c > 
0). Fourier series: 8 × c ÷ π ^ 2 × ∑ from k = 0 to ∞ of 1 ÷ (2 × 
k + 1) ^ 2 × cos ((2 × k + 1) × π ÷ p × x). 

6.  

f (x) = c if |x| < d, 0 if d < |x| < p, where 0 < d < p. Fourier 
series: c × d ÷ p + 2 × c ÷ π × ∑ from n = 0 to ∞ of sin (d × n × 
π ÷ p) ÷ n × cos (n × π ÷ p × x). 

7.  

f (x) = negative 2 ÷ p × (x – p ÷ 2) if 0 < x < p, negative 2 ÷ p × 
(x + p ÷ 2) if negative p < x < 0. Fourier series: 2 ÷ π × ∑ from 
n = 1 to ∞ of 1 ÷ n × sim (2 × n × π ÷ p × x). 

8.  

f (x) = negative c ÷ d × (x – d) if 0 ≤ x ≤ d, 0 if d ≤ |x| ≤ p, c ÷ 
d × (x + d) if negative d ≤ x ≤ 0, where 0 ≤ d ≤ p. Fourier 
series: c × d ÷ 2 × p + 2 × c × p ÷ d × π ^ 2 × ∑ from n = 1 to ∞ 
of 1 ÷ n ^ 2 × (1 – cos (d × n × π ÷ p)) × cos (n × π ÷ p × x). 

9.  

f (x) = e ^ negative c × |x| (c ≠ 0) for |x| ≤ p. Fourier series: 
1 ÷ p × c × (1 – e ^ negative c × p) + 2 × c × p × ∑ from n = 1 
to ∞ of 1 ÷ c ^ 2 × p ^ 2 + (n × π) ^ 2 × (1 – e ^ negative c × p 
× (negative 1) ^ n) × cos (n × π ÷ p ^ x). 

10.  

f (x) = negative 1 ÷ p – c × (x – p) if c < x < p, 1 if |x| < c, 1 ÷ p 
– c × (x + p) if negative p < x < negative c, where 0 < c < p. 
Fourier series: p + c ÷ 2 × p + 2 × p ÷ (c – p) × π ^ 2 × ∑ from 
n = 1 to ∞ of 1 ÷ n ^ 2 × ((negative 1) ^ n – cos (c × n × π ÷ 
p)) × cos (n × π ÷ p × x). 



11.  

(a) Find the Fourier series of the 2 × π-periodic function 
given on the interval negative π < x < π by f (x) = x × 
sin x.  

(b) Plot several partial sums to illustrate the 
convergence of the Fourier series.  

12.  

(a) Find the Fourier series of the 2 × π-periodic function 
given on the interval negative π < x < π by f (x) = (π − 
x) × sin x. [Hint: Exercise 11.] 

(b) Plot several partial sums to illustrate the 
convergence of the Fourier series.  

In Exercises 13-14, a function is given over one period.  

(a) Find its Fourier series. (Hint: Use Exercise 1.}  
(b) Plot several partial sums to illustrate the 

convergence of the Fourier series.  

13.  

14.  

15.  

Obtain the Fourier series of Example 2, Section 2.2, from 
Example 2 of this section.  

16.  

(a) Consider the function and its Fourier series in 
Exercise 6. What happens to the Fourier coefficients 
as d approaches p? Justify your answer.  

(b) Write the Fourier series for the case c = p ÷ d. What 
happens to the Fourier coefficients as d tends to 0 
(p is fixed)?  

17.  

Use the result of Exercise 4 to derive the formulas  

(a) π ^ 2 ÷ 12 = 1 – 1 ÷ 2 ^ 2 + 1 ÷ 3 ^ 2 – 1 ÷ 4 ^ 2 + … 
(b) π ^ 2 ÷ 8 = 1 + 1 ÷ 3 ^ 2 + 1 ÷ 5 ^ 2 + 1 ÷ 7 ^ 2 + … 

[Hint: Use (a) also.] 

18.  

Derive (4) and (5) of Theorem 1. [Hint: Study the proof of 
Theorem 1.]  

19.  

Prove part (ii) of Theorem 2.  

Project Problem: Decomposition into even 
and odd parts.  

Do Exercise 20 and any one of 21-24. You will discover how 
an arbitrary function can be written as the sum of an even 
and odd function.  

20.  

Let f be an arbitrary function defined for all real numbers. 
Consider the functions  

f_e (x) = f (x) + f (negative x) ÷ 2 and f_o (x) = f (x) − f 
(negative x) ÷ 2 

(a) Show that f_e is even and f_o is odd.  
(b) Show that f = f_e + f_o. Hence every function is the 

sum of an even function and an odd function. 
Moreover, show that this decomposition is unique.  

(c) In the remainder of this exercise, we suppose that f 
is 2 × p-periodic. Show that f_e and f_o are both 2 × 
p-periodic.  

(d) Let a_0, a_1, a_2, ..., b_1, b_2, ... denote the Fourier 
coefficients of f. Show that the Fourier series of f_e 
is a_0 + ∑ from n = 1 to ∞ of a_n × cos n × π ÷ p × x, 
and the Fourier series of f_o is ∑ from n = 1 to ∞ of 
b_n × sin n × π ÷ p × x. 



In Exercises 21-24, a 2-periodic function is given by its graph 
over the interval [negative 1, 1]. In each case,  

(a) determine and plot f_e and f_o (see Exercise 20).  
(b) Find the Fourier series of f_e and f_o, and then 

deduce the Fourier series of f.  

21.  

22.  

23.  

24.  

Project Problem: Differentiation of Fourier 
series.  

Can a Fourier series be differentiated term by term? The 
answer is No, in general. Do Exercises 25, 26, and any one of 
27-30, and you will learn when you can safely use this 
process.  

25. Fourier series and derivatives.  

Suppose that f is a 2 × p-periodic, piecewise smooth, and 
continuous function such that f' is also piecewise smooth. 
Let a_n, b_n denote the Fourier coefficients of f and a’_n, 
b’_n those of f'. Show that  

a’_0 = 0, a’_n= b_n × n × π ÷ p, and b’_n = negative a_n × n × 
π ÷ p 

[Hint: To compute the Fourier coefficients of f', evaluate the 
integrals by parts and use f (p) f (negative p).]  

26. Term-by-term differentiation of Fourier series.  

Suppose that f is a 2 × p-periodic piecewise smooth and 
continuous function such that f' is also piecewise smooth. 
Show that the Fourier series of f' is obtained from the 
Fourier series of f by differentiating term by term. That is, 
under the stated conditions, if  

f (x) = a_0- + ∑ from n = 1 to ∞ of (a_n × cos n × π ÷ p × x + 
b_n × sin n × π ÷ p × x), 

then 

f’ (x) = ∑ from n = 1 to ∞ of (negative n × a_n × π ÷ p × sin n 
× π ÷ p × x + n × b_n × π ÷ p × cos n × π ÷ p × x). 

[Hint: Since f' satisfies the hypothesis of Theorem 1 it has a 
Fourier series ex-pansion. Use Exercise 25 to compute the 
Fourier coefficients. Compare with the differentiated 
Fourier series of f.]  

In most cases in this book, f and f' are piecewise smooth. 
Thus, according to Exercise 26, to differentiate term by term 

the Fourier series in these cases, it is enough to check that f 
is continuous. It is important to note that if f fails to satisfy 
some of the assumptions of Exercise 26, then we cannot in 
general differentiate the series term by term. See Exercises 
31-32.  



27.  

Derive the Fourier series in Exercise 1 by differentiating 
term by term the Fourier series in Exercise 5. Justify your 
work.  

28.  

Derive the Fourier series in Exercise 2 by differentiating 
term by term the Fourier series in Exercise 4. Justify your 
work.  

29.  

Use the Fourier series of Exercise 8 to find the Fourier series 
of the 2 × p-periodic function in the figure.  

Figure for Exercise 29.  

30.  

Use the Fourier series of Exercise 10 to find the Fourier 
series of the 2 × p-periodic function in the figure.  

Figure for Exercise 30.  

Project Problem: Failure of term-by-term 
differentiation.  

Do Exercises 31-32 to show that the Fourier series of the 
sawtooth function (a piecewise smooth function) cannot be 
differentiated term by term.  

31.  

(a) Show that for all x,  
lim as n → ∞ of cos n × x ≠ 0.  
[Hint: Proof by contradiction. Assume that lim as n 
→ ∞ of cos n × x = 0 for some x. Conclude that lim 
as n → ∞ of cos^2 n × x = 0 and lim as n → ∞ of cos 
(2 × n × x) = 0. Get a contradiction by using the 
identity cos^2 n × x = 1 + cos (2 × n × x) ÷ 2.] 

(a) Use the nth term test for series and (a) to conclude 
that the series ∑ from n = 1 to ∞ of cos n × x is 
divergent for all x.  

32. Failure of term-by-term differentiation.  

Consider the Fourier series of the sawtooth function ∑ from 
n = 1 to ∞ of sin n × x ÷ n. 

(a) Show that the function represented by this Fourier 
series satisfies all the hy-potheses of Exercise 26, 
except that it fails to be continuous.  

(b) Use the result of Exercise 31 to show that the series 
in (a) cannot be differentiated term by term.  

33. Project Problem: Term-by-term integration of 
Fourier series.  

Let f be as in Theorem 1, and define an antiderivative of f by  

F (x) = ∫ from 0 to x of f (t) dt.  

From Exercises 15-16, Section 2.1, we know that F is 2 × p-
periodic if and only if ∫ from 0 to 2 × p of f (t) dt = 0. Show 
that, in this case, the Fourier series of F is  

F (x) = A_0 + ∑ from n = 1 to ∞ of (negative p ÷ n × π × b_n × 
cos n × π ÷ p × x + a_n sin n × π ÷ p × x), 

where A_0 = p ÷ π × ∑ from n = 1 to ∞ of b_n ÷ n. Hence, as 
long as F is periodic, with no further assump-tions on f other 
than piecewise smoothness, we can get the Fourier series of 
F  



by integrating term by term the Fourier series of f. [Hint: 
Apply the result of Exercise 25 to F (x) and use F' (x) = f (x). 
To compute A_0, use F (0) = 0 (why?).]  

34.  

Use Exercise 33 to derive the Fourier series of Exercise 4 
from that of Exercise 2.

2.4 Half-Range Expansions: The Cosine and Sine Series  
In many applications we are interested in representing by a Fourier series a function J(x) that is defined only in a finite interval, 
say 0 < x < p. Since f is clearly not periodic, the results of the previous sections are not readily applicable. Our goal in this section 
is to show how we can represent f by a Fourier series, after extending it to a periodic function.  

THEOREM 1 HALF-RANGE EXPANSIONS  
Suppose that f (x) is a piecewise smooth function defined on an interval 0 < x < p. Then f has a cosine series expansion 

(1) a_0 + ∑ from n = 1 to ∞ of a_n × cos n × π ÷ p × x (0 < x < p), 

where 

(2) a_0 = 1 ÷ p × ∫ from 0 to p of f (x) dx; a_n = 2 ÷ p × ∫ from 0 to p of f (x) × cos n × π ÷ p × x dx (n ≥ 1) 

Also. f has a sine series expansion 

(3) ∑ from n = 1 to ∞ of b_n × sin n × π ÷ p × x (0 < x < p), 

where 

(4) b_n = 2 ÷ p × ∫ from 0 to p of f (x) × sin n × π ÷ p × x dx (n ≥ 1) 

On the interval 0 < x < p, the series (1) and (3) converge to f (x) if f is continuous at x and to f (x^+) + f (x^−) ÷ 2 otherwise. 

The series (1) and (3) are commonly referred to as the half-range expan-sions off. They are two different series representations 
of the same function on the interval 0 < x < p. Theorem 1 will be derived by appealing to the Fourier series representation of 
even and odd functions (Theorem 2, Section 2.3). For this purpose, we introduce the following important notions.  

Define the even periodic extension of f by f_1 (x) = f (x) if 0 < x < p, f_1 (x) = f (negative x) if negative p < x < 0, and f_1 (x) = f_1 (x 
+ 2 × p) otherwise. Define the odd periodic extension of f by f_2 (x) = f (x) if 0 < x < p, f_2 (x) = negative f (negative x) if negative p 
< x < 0, and f_2 (x) = f_2 (x + 2 × p) otherwise. (In view of the remark following Theorem 1 of Section 2.2, we will not worry about 
the definition  



of the extensions at the points 0, ±p, ±2 × p, ...)  

Figure 1 

(a) f (x), 0 < x < p. 
(b) Even 2 × p-periodic extension, f_1. 
(c) Odd 2 × p-periodic extension, f_2.  

By the way they are constructed, the function f_1 is even and 2 × p-periodic, and the function f_2 is odd and 2 × p-periodic. Both 
functions agree with f on the interval 0 < x < p, which justifies calling them extensions of f (Figure 1). Since f is piecewise smooth, 
it follows that f_1 and f_2 are both piecewise smooth. Applying Theorem 2 of Section 2.3, we find that f_1 has a cosine series 
expansion given by (1) with the coefficients (2). Now, f (x) = f_1 (x) for all 0 < x < p, and so the cosine series (1) represents f on 
this interval. Similar reasoning using f_2 yields the sine series expansion of f.  

EXAMPLE 1 Half-range expansions  
Find the half-range expansions of the function f (x) = x for 0 < x < 1.  

Solution  

The graphs of the even and odd extensions are shown in Figure 2.  

Figure 2  

(a) f (x) = x, 0 < x < 1.  
(b) Even extension of f, period 2.  
(c) Odd extension of f, period 2.  

The even extension is a special case of Example 1 of Section 2.3 with p = 1. We have  

x = 1 ÷ 2 – 4 ÷ π ^ 2 × ∑ from k = 0 to ∞ of 1 ÷ (2 × k + 1) ^ 2 × cos (2 × k + 1) × π × x, for all 0 ≤ x ≤ 1. 

The odd extension is a special case of Exercise 2 of Section 2.3, with p = 1. However, to illustrate the formulas of Theorem 1, we 
will derive the sine coefficients using (4). We have  

b_n = 2 ÷ 1 × ∫ from 0 to 1 of x × sin π × x dx = 2 × (negative 1) ^ n – 1 ÷ n × π 

Hence  

x = 2 ÷ π × ∑ from n = 1 to ∞ of (negative 1) ^ n – 1 ÷ n × sin n × π × x, 0 ≤ x < 1. 



It is a remarkable fact that the cosine series and the sine series have the same values on the intervals (0, 1), (2, 3), (negative 2, 
negative 1), … 

EXAMPLE 2 Half-range expansions  
Consider the function f (x) = sin x, 0 ≤ x ≤ π. If we take its odd extension, we get the usual sine function, f_2 (x) = sin x for all x. 
Thus, the sine series expansion is just sin x.  

Figure 3  

(a) f (x) =sin × x, 0 ≤ x ≤ π.  
(b) Odd extension of f, sin × x.  
(c) Even extension of f, |sin x|.  

If we take the even extension of f, we get the function |sin x|. The Fourier series of this even function can be obtained from 
Exercise 7, Section 2.2. Thus the cosine series (of sin x) is  

sin x = 2 ÷ π – 4 ÷ π × ∑ from k = 0 to ∞ of 1 ÷ (2 × k) ^ 2 − 1 × cos 2 × k × x, 0 ≤ x ≤ π.

Exercises 2.4  
In Exercises 1-8,  

(a) find the half-range expansions of the given function. 
(Use as much as possible series that you have 
encountered earlier.)  

(b) To illustrate the convergence of the cosine and sine 
series, plot several partial sums of each and 
comment on the graphs.  

1.  

f (x) = 1 if 0 < x < 1.  

2.  

f (x) = π – x if 0 ≤ x ≤ π.  

3.  

f (x) = x ^ 2 if 0 < x < 1.  

4.  

f (x) = 0 if 0 ≤ x < 1, x – 1 if 1 ≤ x < 2. 

5.  

f (x) = 1 if a< x < b, 0 if 0 < x < a or b< x < p, where 0 < a< b < 
p < ∞.  

For (b), take p = 1, a = 1 ÷ 4, b = 1 ÷ 2.  

6.  

f (x) = cos x if 0 < x < π.  

7.  

f (x) = cos x if 0 ≤ x ≤ π ÷ 2.  

8.  

f (x) =x × sin x if 0 < x < π.  



In Exercises 9-16, find the sine series expansion of the given 
function on the interval 0 < x < 1. 

9.  

x × (1 − x). 

10.  

1 – x ^ 2 

11.  

sin π × x 

12. 

sin π ÷ 2 × x 

13.  

sin π × x × cos π × x 

14.  

(1 + cos π × x) × sin π × x 

15.  

e ^ x 

16.  

1 – e ^ x 

17. Triangular function.  

Let f (x) denote the shape of a plucked string of length p 
with endpoints fastened at x = 0 and x = p, as shown in 
Figure 4. 

Figure 4 for Exercise 17. 

(a) Using the data in the figure, derive the formula 
f (x) = h ÷ a × x if 0 ≤ x ≤ a, h ÷ a – p × (x – p) if a ≤ x ≤ 
p. 

(b) Obtain the sine series representation of f 
f (x) = 2 × h × p ^ 2 ÷ a × (negative a + p) × π ^ 2 × ∑ 
from n = 1 to ∞ of sin a × n × π ÷ o ÷ n ^ 2 × sin n × π 
÷ p × x. 

(c) Verify this representation by taking a= 1 ÷ 3, p = 1, h 
= 1 ÷ 10 and plotting the resulting function f along 
with several partial sums of its Fourier series. 

2.5 Mean Square Approximation and Parseval's Identity  
You may recall how when dealing with the Taylor series of a given function, it is important to know how well the partial sums of 
the Taylor series (or Taylor polynomials) approximate the function. A similar problem arises in Fourier series. When a 2 × p-
periodic function is represented by its Fourier series,  

f (x) = a_0 + ∑ from n = 1 to ∞ of (a_n × cos n × π ÷ p × x + b_n × sin n × π ÷ p × x), 

it is important to know how well the Nth partial sums  

(1) s_N (x) = a_0 + ∑ from n = 1 to ∞ of (a_n × cos n × π ÷ p × x + b_n × sin n × π ÷ p × x) 

approximate f. To tackle this problem, we will study the integral  

(2) E_N = 1 ÷ 2 × p × ∫ from negative p to p of (f (x) – s_N (x)) ^ 2 dx (You may want to do Exercise 6 to see in what sense E_N is 
an average.), 

known as the mean (or total) square error of the partial sum s_N relative to f. We also say that s_N approximates f in the mean 
with error E_N. The quantity E_N is the average of the function (f (x) – s_N (x)) ^ 2 over the interval negative p ≤ x ≤ p. We will 
see that E_N is expressible in terms of the Fourier coefficients-a very useful fact that enables you to compute E_N by  



using the Fourier coefficients. We will also show in Theorem 1 below that E_N tends to zero as N tends to infinity. This important 
result guarantees that you can approximate a function in the mean by its Fourier series.  

You may be wondering why, in studying the error in approximating a function by the partial sums of its Fourier series, we did not 
simply measure the maximum of |f (x) – s_N (x)| as x ranges over the interval negative p ≤ x ≤ p. While this method is 
informative, it is often inconclusive, especially when f is not continuous. As you may recall, in this case we have a Gibbs 
phenomenon, which means that the difference |f (x) – s_N (x)| remains large at some x in the interval, no matter how large N is.  

EXAMPLE 1 Approximation in the mean by Fourier series  
Compute E_N for N = 1, 2, ..., 10, in the case of the 2 × π-periodic sawtooth function f (x) = 1 ÷ 2 × (n − x), 0 < x < 2 × π.  

Solution  

The Fourier series was computed in Example 1, Section 2.2. We have s_n (x) = ∑ from n = 1 to N of sin n × x ÷ n, and so from (2) 

E_N = 1 ÷ 2 × π × ∫ from 0 to 2 × π of (1 ÷ 2 × (π – x) − ∑ from n = 1 to N of sin n × x ÷ n) ^ 2 dx. 

Computer approximations of E_N for small N are shown in the following table.  

N 1 2 3 4 5 6 7 8 9 10 
E_N 0.322 0.197 0.142 0.111 0.091 0.077 0.067 0.059 0.053 0.048 

Figure 1 The mean square error E_4 is represented by the shaded area under the graph of 1 ÷ 2 × π × (f (x) – s_4 (x)) ^ 2. This 
area is equal to 0.111, according to the table. 

The table seems to indicate that E_N decreases to zero as N increases. That is,  

lim as N → ∞ of E_N = lim as N → ∞ of 1 ÷ 2 × π × ∫ from 0 to 2 × π of (f (x) – s_N (x)) ^ 2 dx = 0 

For all N, since s_N (0) = s_N (2 × π) = 0 and f (0^+) = f (2 × π^−) = π ÷ 2, the function 1 ÷ 2 × π × (f (x) – s_N (x)) ^ 2 takes on 
values between 0 and π ÷ 8 on the interval [0, 2 × π], yet the area under its graph and above the interval [0, 2 × π] tends to 0 as 
N → ∞ (Figure 1). Thus, in spite of the fact that the difference 1 ÷ 2 × π × (f (x) – s_N (x)) ^ 2 remains large in the interval [0, 2 × 
π], the mean square error decreases to 0 as N tends to ∞.  

To continue our study of the mean square error, we introduce the class of square integrable functions on [a, b], which consists 
of functions f defined on [a, b] and such that ∫ from a to b of f (x) ^ 2 dx < ∞. Simple examples of square integrable functions are 
provided by the piecewise continuous functions on [a, b], and more generally, by the bounded functions on [a, b]. However, a 
function need not be bounded to be square integrable. Can you think of a square integrable function on [negative 1, 1] that is 
not bounded?  



THEOREM 1 APPROXIMATION IN THE MEAN BY FOURIER SERIES 
Suppose that f is square integrable on [negative p, p]. Then s_N, the Nth partial sum of the Fourier series of f, approximates (or 
converges to) f in the mean with an error E_N that decreases to zero as N → ∞. In symbols, we have 

(3) lim as N → ∞ of E_N = lim as N → ∞ of 1 ÷ 2 × p × ∫ from negative p to p of (f (x) – s_N (x)) ^ 2 dx = 0 

To motivate the theorem, suppose that f is continuous and piecewise smooth. Theorem 1 of Section 2.3 implies that (s_N (x) − 
f(x)) → 0 as N → ∞, which in turn implies that (s_N (x) − f(x)) ^ 2 → 0 as N → ∞. If we integrate and assume that we can 
interchange the integral and the limit, we get  

lim as N → ∞ of 1 ÷ 2 × p × ∫ from negative p to p of (f (x) – s_N (x)) ^ 2 dx = 1 ÷ 2 × p × ∫ from negative p to p of lim as N → ∞ of 
(f (x) – s_N (x)) ^ 2 dx 

(4) = 1 ÷ 2 × p × ∫ from negative p to p of 0 dx = 0, 

which is what Theorem 1 asserts. We should point out here that this is not a proof of Theorem 1, since we did not justify the 
interchange of the integral and the limit. Also, in Theorem 1, f is assumed to be only square integrable and not piecewise 
smooth. The proof of Theorem 1 can be done rigorously, but it requires a machinery beyond the level of this text.  

Our next goal is to express the mean square error in terms of the Fourier coefficients.  

THEOREM 2 MEAN SQUARE ERROR  
Suppose that f is square integrable on [negative p, p]. Then 

(5) E_N = 1 ÷ 2 × p × ∫ from negative p to p of f (x) ^ 2 dx – a_0 ^ 2 – 1 ÷ 2 × ∑ from n = 1 to N of (a_n ^ 2 + b_n ^ 2). 

Theorem 2 allows us to compute the mean square error E_N in terms of the integral of the square of the function and its Fourier 
coefficients of index less than or equal to N.  

Proof  

Expanding the right side of (2), we get  

E_N = 1 ÷ 2 × p × ∫ from negative p to p of f (x) ^ 2 dx – 1 ÷ p × ∫ from negative p to p of f (x) × s_N (x) dx + 1 ÷ 2 × p × ∫ from 
negative p to p of s_N (x) ^ 2 dx. 

From the definitions of s_N and the Fourier coefficients ((3)-(5), Section 2.3) it  



follows that  

negative 1 ÷ p × ∫ from negative p to p of f (x) × s_N (x) dx 

= negative 1 ÷ p × ∫ from negative p to p of f (x) × (a_0 + a_1 × cos π ÷ p × x + … + a_N × cos N × π ÷ p × x + b_1 × sin π ÷ p × x + … 
+ b_N × sin N × π ÷ p × x) dx 

= negative (2 × a_0 ^ 2 + a_1 ^ 2 + … + a_N ^ 2 + b_1 ^ 2 + … + b_N ^ 2). 

Expanding s_N (x) ^ 2, then integrating term by term while using the orthogonality of the trigonometric system, we obtain  

1 ÷ 2 × p × ∫ from negative p to p of s_N (x) ^ 2 dx = a_0 ^ 2 + 1 ÷ 2 × a_1 ^ 2 + … + 1 ÷ 2 × a_N ^ 2 + 1 ÷ 2 × b_1 ^ 2 + … + 1 ÷ 2 × 
b_N ^ 2. 

Substituting the values of the last two integrals in the expression for E_N, we obtain (5). 

One useful consequence of (5) is the following inequality:  

a_0 ^ 2 + 1 ÷ 2 × ∑ from n = 1 to ∞ of (a_n ^ 2 + b_n ^ 2) ≤ 1 ÷ 2 × p × ∫ from negative p to p of f (x) ^ 2 dx 

known as Bessel's inequality. To prove it, note that E_N ≥ 0, from (2). Hence (5) implies that a_0 ^ 2 + 1 ÷ 2 × ∑ from n = 1 to N of 
(a_n ^ 2 + b_n ^ 2) ≤ 1 ÷ 2 × p × ∫ from negative p to p of f (x) ^ 2 dx. The desired inequality follows by Jetting N → ∞.  

A much stronger result can be derived by using Theorem 1. Indeed, appealing to this theorem, and using (5), it follows that  

0 = lim as N → ∞ of E_N= 1 ÷ 2 × p × ∫ from negative p to p of f (x) ^ 2 dx − a_0 ^ 2 − 1 ÷ 2 × ∑ from n = 1 to ∞ of (a_n ^ 2 + b_n ^ 
2) 

or, equivalently,  

PARSEVAL'S IDENTITY  
(6) 1 ÷ 2 × p × ∫ from negative p to p of f (x) ^ 2 dx = a_0 ^ 2 + 1 ÷ 2 × ∑ from n = 1 to ∞ of (a_n ^ 2 + b_n ^ 2) 

This very important formula is known as Parseval's identity. It is valid for all square integrable functions on [negative p, p] and 
has many interesting applications.  

Parseval's identity, or Bessel's inequality, imply that the Fourier coefficients of a square integrable function are square 
summable. That is, we  



have  

a_0 ^ 2 + 1 ÷ 2 × ∑ from n = 1 to ∞ of (a_n ^ 2 + b_n ^ 2) < ∞. 

You should note that, in general, we do not have ∑ from n = 1 to ∞ of a_n < ∞ or ∑ from n = 1 to ∞ of b_n < ∞. Consider, for 
example, the Fourier series ∑ from n = 1 to ∞ of sin n × x ÷ n. We have b_n = 1 ÷ n, and hence ∑ from n = 1 to ∞ of b_n = ∞. 
However, the Fourier coefficients are square summable, since ∑ from n = 1 to ∞ of b_n ^ 2 = ∑ from n = 1 to ∞ of 1 ÷ n ^ 2 < ∞, a 
fact guaranteed by Bessel's inequality.  

We next apply Parseval's identity to the sawtooth function and get a very nice result.  

EXAMPLE 2 Evaluating series with Parseval’s identity 
Evaluate the series 1 + 1 ÷ 2 ^ 2 + 1 ÷ 3 ^ 2 + 1 ÷ 4 ^ 2 + … 

Solution  

As we just observed, the sequence 1, 1 ÷ 2, 1 ÷ 3, ... arises from the Fourier coefficients of the sawtooth function of Example 1. 
Here a_n = 0 for n = 0, 1, 2, ..., and b_n = 1÷ n for n= 1, 2, 3, ... Putting this into Parseval’s identity, we get  

1 ÷ 2 × π × ∫ from 0 to 2 × π of (1 ÷ 2 × (π – x)) ^ 2 dx = 1 ÷ 2 × ∑ from n = 1 to ∞ of 1 ÷ n ^ 2. 

Since  

1 ÷ 2 × π × ∫ from 0 to 2 × π of (1 ÷ 2 × (π – x)) ^ 2 dx = negative 1 ÷ 24 × π × (π – x) ^ 3 from 0 to 2 × π = π ^ 2 ÷ 12, 

we get  

1 + 1 ÷ 2 ^ 2 + 1 ÷ 3 ^ 2 + 1 ÷ 4 ^ 2 + … = π ^ 2 ÷ 6. 

Similar methods can be used to evaluate the sums of the reciprocals of the even powers of n (see the exercises). The values of 
the sums of the reciprocals of the odd powers of n, ∑ from n = 1 to ∞ of 1 ÷ n ^ 3, ∑ from n = 1 to ∞ of 1 ÷ n ^ 5, ... are not 
known. 

Exercises 2.5  
In Exercises 1-4, use (5) to compute EN for N = 1, 2, 3.  

1.  

f as in Exercise 1, Section 2.3, with p = 1.  

2.  

f as in Exercise 2, Section 2.3, with p = π.  

3.  

f as in Exercise 3, Section 2.3, with p = π and a= 1.  

4.  

f as in Exercise 4, Section 2.3, with p = 1.  

5.  

Determine N so that E_N < 10 ^ negative 2 in Exercise 1.  

6. The definite integral as an average.  

Explain why the number  

1 ÷ b – a × ∫ from a to b of f (x) dx 



represents the average of f on the interval [a, b]. [Hint: 
Approximate the definite integral by a Riemann sum. 
Interpret the sum as an average, using the fact that the 
average of n numbers y_1, y_2, …, y_n is y_1 + y_2 + … + 
y_n ÷ n.]  

The Riemann zeta function is defined for all s > 1 by  

ζ (s) = ∑ from n = 1 to ∞ of 1 ÷ n ^ s 

This function is very important in number theory and other 
branches of mathematics. We saw in Example 2 that ζ (2) = 
π ^ 2 ÷ 6. Using Parseval’s identity and various Fourier series 
expansions, you can compute ζ (2 × k) for any positive 
integer k. The following table contains some values that you 
are asked to derive in Exercises 7-11, below. 

s 2 4 6 8 10 
ζ (s) = ∑ 
from n = 1 
to ∞ of 1 
÷ n ^ s 

π ^ 2 
× 6 

π ^ 4 
× 90 

π ^ 6 
× 945 

π ^ 8 × 
9450 

π ^ 10 × 
93555 

7.  

(a) Use Parseval’s identity and the Fourier series 
expansion 
x ÷ 2 = ∑ from n = 1 to ∞ of (negative 1) ^ n + 1 ÷ n × 
sin n × x, negative π < x < π, 
to obtain 
∑ from n = 1 to ∞ of 1 ÷ π ^ 2= π ^ 2 ÷ 6. 

(b) From (a) obtain that ∑ from k = 1 to ∞ of 1 ÷ (2 × k) 
^ 2 = π ^ 2 ÷ 24. 

(c) Combine (a) and (b) to derive the identity 
∑ from k = 1 to ∞ of 1 ÷ (2 × k + 1) ^ 2 = π ^ 2 ÷ 8. 

8.  

Use the Fourier series expansion 

x ^ 2 = π ^ 2 ÷ 3 + 4 × ∑ from n = 1 to ∞ of (negative 1) ^ n ÷ 
n ^ 2 × cos n × x, negative π < x < π, 

(Exercise 4, Section 2.3) and Parseval’s identity to calculate ζ 
(4). 

9.  

Use the Fourier series expansion in Exercise 12, Section 2.2, 
and Parseval’s identity to calculate ζ (6). 

10.  

The Bernoulli numbers B_n arise in many contexts in 
mathematics. They can be generated from the power series 
expansion 

x ÷ e ^ x – 1 = ∑ from n = 0 to ∞ of B_n × x ^ n ÷ n!. 



(a) Derive the power series expansion 
x ÷ e ^ x – 1 = 1 – x ÷ 2 + x ^ 2 ÷ 6 × 3! – x ^ 4 ÷ 30 × 
4! + x ^ 6 ÷ 42 × 6! – x ^ 8 ÷ 30 × 8! + 5 ÷ 66 × x ^ 10 
÷ 10! – 691 ÷ 2730 × x ^ 12 ÷ 12! + 7 ÷ 6 × x ^ 14 ÷ 
14! + ... 

(b) Derive the following Bernoulli numbers: 
B_0 = 1, B_1 = negative 1 ÷ 2, B_2 = 1 ÷ 6, B_3 = 0, 
B_4 = negative 1 ÷ 30, B_5 = 0, B_6 = 1 ÷ 42, B_7 = 
0, B_8 = negative 1 ÷ 30, B_9 = 0, B_10 = 5 ÷ 66, 
B_11 = 0, B_12 = negative 691 ÷ 2730, B_13 = 0, 
B_14 = 7 ÷ 9. 

(c) Show that in general 
B_n = d ^ n ÷ d × x ^ n × (x ÷ e ^ x – 1) from x = 0. 

11. Bernoulli numbers and the zeta function.  

It can be shown that the values of the zeta function at the 
even integers are related to the Bernoulli numbers by the 
identity 

ζ (2 × s) = 2 ^ 2 × s – 1 × |B_2 × s| ÷ (2 × s)! × π ^ 2 × s. 

(This formula can be derived using basic complex analysis. 
See [1], pp. 501-502.) Use the values of the Bernoulli 
numbers from Exercise 10 to evaluate the series 

∑ from n = 1 to ∞ of 1 ÷ n ^ 8, ∑ from n = 1 to ∞ of 1 ÷ n ^ 
10, ∑ from n = 1 to ∞ of 1 ÷ n ^ 12, ∑ from n = 1 to ∞ of 1 ÷ 
n ^ 14. 

12.  

Show that approximating f in the mean by s_N + 1 instead 
of s_N decreases the mean square error by 1 ÷ 2 × (a_N + 1 
^ 2 + b_N + 1 ^ 2). [Hint: Theorem 2.] 

In Exercises 13-17, compute ∫ from negative π to π of f^2 (x) 
dx using Parseval’s identity. [Hint: Use the geometric series 
and the table of values for the zeta function.] 

13.  

f (x) = ∑ from n = 1 to ∞ of cos n × x ÷ n ^ 2 

14.  

f (x) = ∑ from n = 1 to ∞ of sin n × x ÷ n ^ 2 

15.  

f (x) = ∑ from n = 1 to ∞ of cos n × x ÷ 2 ^ n 

16.  

f (x) = ∑ from n = 1 to ∞ of e ^ negative n × sin n × x 

17.  

f (x) = 1 + ∑ from n = 1 to ∞ of (cos n × x ÷ 3 + sin n × x ÷ n) 

18. Project Problem: An optimization 
problem.  

A 2 × p-periodic trigono-metric polynomial of degree N is an 
expression of the form  

g_N (x) = A_0 + ∑ from n = 1 to N of (A_n × cos n × π ÷ p × x 
+ B_n × sin n × π ÷ p × x), 



where A_0, A_n, and B_n, are real numbers-not necessarily 
Fourier coefficients. In some numerical applications, we 
want to approximate in the mean a given function f by 
trigonometric polynomials of degree N. The problem is to 
choose the coefficients A_0, A_n, and B_n, so as to 
minimize the mean square error  

E_N^* = 1 ÷ 2 × p × ∫ from negative p to p of (f (x) – g_N (x)) 
^ 2 dx.  

This optimization problem has a very nice solution that you 
are asked to derive in this exercise:  

Of all trigonometric polynomials g_N (x) of degree N, the 
one that minimizes the mean square error is the Nth partial 
sum of the Fourier series of f.  

That is, the best choice of the coefficients A_0, A_n, and 
B_n is to take them to be the corresponding Fourier 
coefficients of f.  

(a) Study the proof of Theorem 2 and show that  
E_N^* = 1 ÷ 2 × p × ∫ from negative p to p of f^2 (x) 
dx + A_0 ^ 2 + 1 ÷ 2 × ∑ from n = 1 to N of (A_n ^ 2 + 
B_n ^ 2) – [2 × a_0 × A_0 + ∑ from n = 1 to N of (a_n 
× A_n + b_n × B_n)], 
where a_0, a_n, and b_n are the Fourier coefficients 
of f given by (3)-(5), Section 2.3.  

(b) Use Parseval's identity and obtain the relationship  
E_N^* = (a_0 – A_0) ^ 2 + 1 ÷ 2 × ∑ from n = 1 to N 
of ((a_n – A_n) ^ 2 + (b_n – B_n) ^ 2) + 1 ÷ 2 × ∑ 
from n = N + 1 to ∞ of (a_n ^ 2 + b_n ^ 2). 

(c) Complete the proof of the optimization problem. 
[Hint: E_N^* is the sum of nonnegative terms. 
Minimize it by making as many terms as possible 
equal to zero.] 

2.6 Complex Form of Fourier Series  
To review complex-valued functions, including the exponential function; see Exercises 16-26. 

Let us start with the two identities  

(1) cos u = e ^ i × u + e ^ negative i × u ÷ 2 and sin u = e ^ i × u – e ^ negative i × u ÷ 2 × i 

that relate the complex exponential to the cosine and sine functions. We will use these identities to find a complex form for the 
Fourier series expansion of a 2 × p-periodic function  

(2) f (x) = a_0 + ∑ from n = 1 to ∞ of (a_n × cos n × π ÷ p × x + b_n × sin n × π ÷ p × x). 

The main result of this section is the following alternative statement of the Fourier series representation theorem of Section 2.3.  



THEOREM 1 COMPLEX FORM OF FOURIER SERIES  
Let f be a 2 × p-periodic piecewise smooth function. The complex form of the Fourier series of f is 

(3) ∑ from n = negative ∞ to ∞ of c_n × e ^ i × n × π ÷ p × x, 

where the Fourier coefficients c_n are given by 

(4) c_n = 1 ÷ 2 × p × ∫ from negative p to p of f (t) × e ^ negative i × n × π ÷ p × x dt (n = 0, ±1, ±2, …). 

For all x, the Fourier series converges to f (x) if f is continuous at x, and to f (x^+) + f (x^−) ÷ 2 otherwise. 

The Nth partial sum of (3) is by definition the symmetric sum  

s_N (x) ∫ from negative N to N of c_n × e ^ i × n × π ÷ p × x. 

We will see in a moment that s_N (x) is the same as the usual partial sum of the Fourier series,  

s_N (x) = a_0 + ∑ from n = 1 to N of (a_n × cos n × π ÷ p × x + b_n × sin n × π ÷ p × x). 

Before we proceed, let us be specific about the meaning of a definite or indefinite integral involving a complex-valued function 
of a real variable, such as the one that appears in (4). If h (t) is complex-valued, write h (t) = u (t) + i × v (t), where u and v are the 
real and imaginary parts of h. We define  

∫ h (t) dt = ∫ (u (t) + i × v (t)) dt = ∫ u (t) dt + i × ∫ v (t) dt. 

Thus, the integral of a complex-valued function is a complex linear combination of two integrals of real-valued functions. For 
example, if h (t) = f (t) × e ^ i × c × t, where f (t) is real-valued and e is a real number. Then h (t) = f (t) × e ^ i × c × t = f (t) × (cos c × 
t + i × sin c × t). So  

∫ f (t) × e ^ i × c × t dt = ∫ f (t) × cos c × t dt + i × ∫ f (t) × sin c × t dt, 

where now both integrals on the right are integrals or antiderivatives of real-valued functions.  

From this definition, it is straightforward to show that the integral is linear: If h and g are complex-valued and α and β are 
complex numbers,  



then  

∫ (α × h (t) + β × g (t)) dt =α × ∫ h (t) + β × ∫ g (t) dt. 

Proof of Theorem 1  

It is enough to show that S_N = s_N, then the theorem will follow from Theorem 1, Section 2.3. We clearly have c_0 = a_0. For n 
> 0, using (1), we get  

a_n × cos n × π ÷ p × x + b_n sin n × π ÷ p × x = a_n × e ^ i × n × π ÷ p × x + e ^ negative i × n × π ÷ p × x ÷ 2 + b_n × e ^ i × n × π ÷ p 
× x – e ^ negative i × n × π ÷ p × x ÷ 2 × i 

= 1 ÷ 2 × (a_n + 1 ÷ i × b_n) × e ^ i × n × π ÷ p × x + 1 ÷ 2 × (a_n – 1 ÷ i × b_n) × e ^ negative i × n × π ÷ p × x 

= 1 ÷ 2 × (a_n – i × b_n) × e ^ i × n × π ÷ p × x + 1 ÷ 2 × (a_n + i × b_n) × e ^ negative i × n × π ÷ p × x 

Using the formulas for a_n and b_n (Theorem 1, Section 2.3) and (4), we have  

1 ÷ 2 × (a_n – i × b_n) = 1 ÷ 2 × p × ∫ from negative p to p of f (t) × cos n × π ÷ p × t dt – i ÷ 2 × p × ∫ from negative p to p of f (t) × 
sin n × π ÷ p × t dt 

= 1 ÷ 2 × p × ∫ from negative p to p of f (t) × (cos n × π ÷ p × t – i × sin n × π ÷ p × t) dt 

= 1 ÷ 2 × p × ∫ from negative p to p of f (t) × e ^ negative i × n × π ÷ p × t dt = c_n 

To simplify the middle integral, we used Euler's identity: e ^ i × Θ = cos Θ − i × sin Θ. A similar argument shows that c_negative n 
= 1 ÷ 2 × (a_n + i × b_n). Thus, for n ≥ 1,  

a_n × cos n × π ÷ p × x + b_n × sin n × π ÷ p × x = c_n × e ^ i × n × π ÷ p × x + c_negative n × e ^ negative i × n × π ÷ p × x, 

and so  

s_N (x) = a_0 + ∑ from n = 1 to N of (a_n × cos n × π ÷ p × x + b_n × sin n × π ÷ p × x) =c_0 + ∑ from n = 1 to N of c_n × e ^ i × n × π 
÷ p × x + ∑ from n = 1 to N of c_negative n × e ^ negative i × n × π ÷ p × x 

Changing n to in the second series on the right and combining, we get that s_N (x) = S_N (x), and the theorem follows.  

We now highlight some interesting identities that relate the complex Fourier coefficients to the Fourier cosine and sine 
coefficients.  

(5) c_0= a_0; 

(6) c_n = 1 ÷ 2 × (a_n – i × b_n), c_negative n = 1 ÷ 2 × (a_n + i × b_n) (n > 0); 

(7) a_n = c_n + c_negative n, b_n = i × (c_n – c_negative n) (n > 0); 

(8) S_N (x) = s_N (x) 



Identities (5), (6), and (8) were derived in the proof of Theorem 1. Identities (7) follow from (6). If f is real-valued, so that a_n and 
b_n are both real, then (6) shows that c_negative n is the complex conjugate of c_n. In symbols,  

(9) c_negative n = c-bar_n 

This identity fails in general if f is not real-valued. Consider f (x) = e ^ i × x. From the orthogonality relations (11) below, we see 
that c_1 = 1 and c_n = 0 for all n ≠ 1. In particular, c_negative 1 = 0, and hence c_negative 1 ≠ c-bar_1. 

The complex form of the Fourier series is particularly useful when dealing with exponential functions, as illustrated in our next 
example. We will take advantage of the formula  

∫ e ^ α × t dt = 1 ÷ α × e ^ α × t + C (α ≠ 0), 

which holds with complex numbers α. Even though this formula is clear when α is real, its validity should be verified for complex 
a (Exercise 19).  

EXAMPLE 1 A complex Fourier series  
Find the complex form of the Fourier series of the 2 × π-periodic function f (x) = e ^ a × x for negative π < x < π, where a ≠ 0, ±i, 
±2 × i, ±3 × i, ... Determine the values of the Fourier series at x = ±π. 

Figure 1 A 2 × π-periodic function, f (x) = e ^ a × x, negative π < x < π, where a > 0. 

Solution 

From (4), we have, 

(10) c_n = 1 ÷ 2 × π × ∫ from negative π to π of e ^ a × x × e ^ negative i × n × x dx = 1 ÷ 2 × π × [e ^ (a – i × n) ÷ a – i × n] from 
negative π to π = (negative 1) ^ n ÷ a – i × n × sinh π × a ÷ π, 

where we have used e ^ ±i × n × x = (negative 1) ^ n and sinh π × a = e ^ π × a – e ^ negative π × n ÷ 2. Plugging these coefficients 
into (3) and simplifying, we obtain the complex form of the Fourier series of f 

sinh π × a ÷ π × ∑ from n = negative ∞ to ∞ of (negative 1) ^ n ÷ a – i × n × e ^ i × n × x = sinh π × a ÷ π × ∑ from n = negative ∞ to 
∞ of (negative 1) ^ n ÷ a ^ 2 + n ^ 2 × (a + i × n) × e ^ i × n × x. 

(We remind you that here and throughout the section the doubly infinite Fourier series represents the limit of the symmetric 
partial sums, ∑ from n = negative N to N. The series may diverge if we allow n to vary from negative ∞ to ∞ in an arbitrary 
fashion.) Applying Theorem 1 to f (x), we obtain the Fourier series representation  

e ^ a × x = sinh π × a ÷ π × ∑ from n = negative ∞ to ∞ of (negative 1) ^ n ÷ a ^ 2 + n ^ 2 × (a + i × n) × e ^ i × n × x (negative π < x < 
π). 

According to Theorem 1, the values of the Fourier series at the points of discontinuity, and in particular at x = ±π, are given by 
the average of the function at these points. From Figure 1, we see that this average is  

e ^ n × x + e ^ negative a × π ÷ 2= cosh a × π. 



As a specific illustration, if you take x = π in the Fourier series, you obtain the interesting identity  

cosh a × π = sinh π × a ÷ π × ∑ from n = negative ∞ to ∞ of a + i × n ÷ a ^ 2 + n ^ 2, a ≠ 0, ±i, ±2 × i, ±3 × i 

We have used e ^ i × n × x = (negative 1) ^ n and (negative 1) ^ n × (negative 1) ^ n = 1 to simplify the series. (See Exercises 12 
and 13 for related results.) Finally, let us note that if a = ±i × n, then f (x) = e ^ ±i × n × x, and hence f is its own Fourier series.  

EXAMPLE 2 The (usual) Fourier series from the complex form  
Obtain the usual Fourier series of the function in Example 1 from its complex form. Take a to be a real number ≠ 0.  

Solution  

The point here is not to use the formulas of Section 2.2 to compute the Fourier series. Instead, we will use Example 1 and 
appropriate formulas relating the Fourier coefficients a_n and b_n to the complex Fourier coefficients c_n. From (5) and (10), we 
obtain  

a_0 = c_0 = 1 ÷ a × sinh π × a ÷ π. 

From (7) and (10), we have  

a_n = (negative 1) ^ n × sinh π × a ÷ π × (1 ÷ a – i × n + 1 ÷ a + i × n) = (negative 1) ^ n × sinh π × a ÷ π × 2 × a ÷ a ^ 2 + n ^ 2, 

and 

b_n = i × (negative 1) ^ n × sinh π × a ÷ π × (1 ÷ a – i × n − 1 ÷ a + i × n) = negative (negative 1) ^ n × sinh π × a ÷ π × 2 × a ÷ a ^ 2 + 
n ^ 2. 

Thus, the Fourier series of f is  

1 ÷ a × sinh π × a÷ π + sinh π × a÷ π × ∑ from n = 1 to ∞ of (negative 1) ^ n ÷ a ^ 2 + n ^ 2 × (2 × a× cos n × x – 2 × n × sin n × x). 

In particular, for negative π < x < π and a ≠ 0, we have  

e ^ n × x = 1 ÷ a × sinh π × a÷ π + sinh π × a÷ π × ∑ from n = 1 to ∞ of (negative 1) ^ n ÷ a ^ 2 + n ^ 2 × (2 × a× cos n × x – 2 × n × sin 
n × x). 

We took a = 1 and illustrated the convergence of the Fourier series in Figure 2. Note that because the sine coefficients are of the 
order l/n, the series converges relatively slowly like the Fourier series of the sawtooth function. 

Figure 2 Partial sums of the Fourier series of the 2 × π- periodic function f (x) = e ^ x, negative π < x < π. 



Orthogonality and Parseval's Identity  
In Section 2.2 we derived the coefficients of the Fourier series by using the orthogonality of the trigonometric system. Similarly, 
the complex form of the Fourier coefficients can be obtained by appealing to the orthogonality of the complex exponential 
system  

1, e ^ i × π ÷ p × x, e ^ negative i × π ÷ p × x, e ^ i × 2 × π ÷ p × x, e ^ negative i × 2 × π ÷ p × x, …, e ^ i × n × π ÷ p × x, e ^ negative i 
× n × π ÷ p × x, … 

The orthogonality of this system is expressed by  

(11) 1 ÷ 2 × p × ∫ from negative p to p of e ^ i × n_i × π ÷ p × x × e ^ negative i × n × π ÷ p × x dx = 0 if m ≠ n and 1 if m = n. 

The verification is left as an exercise. We end this section by deriving the complex form of Parseval's identity.  

THEOREM 2 COMPLEX FORM OF PARSEVAL'S IDENTITY  
Let f be a real-valued square integrable function on [negative p, p] with Fourier coefficients c_n given by (4). Then 

1 ÷ 2 × p × ∫ from negative p to p of f (x) ^ 2 dx = ∑ from n = negative ∞ to ∞ of |c_n| ^ 2 

Proof 

From (5), we have a_0 ^ 2 = c_0 ^ 2, and with the help of (6) and (9), we obtain 

|c_n| ^ 2 = c_n × c-bar_n = 1 ÷ 4 × (a_n – i × b_n) × (a_n + i × b_n) = 1 ÷ 4 × (a_n ^ 2 + b_n), 

and similarly, 

|c_negative n| ^ 2 = c_negative n × c-bar_negative n = 1 ÷ 4 × (a_n + i × b_n) × (a_n − i × b_n) = 1 ÷ 4 × (a_n ^ 2 + b_n). 

Thus 

∑ from n = negative ∞ to ∞ of |c_n| ^ 2 = |c_0| ^ 2 + ∑ from n = 1 to ∞ of |c_n| ^ 2 + ∑ from n = 1 to ∞ of |c_negative n| ^ 2 

= a_0 ^ 2 + 1 ÷ 4 × ∑ from n = 1 to ∞ of (a_n ^ 2 + b_n ^ 2) + 1 ÷ 4 × ∑ from n = 1 to ∞ of (a_n ^ 2 + b_n ^ 2) 

= a_0 ^ 2 + 1 ÷ 2 × ∑ from n = 1 to ∞ of (a_n ^ 2 + b_n ^ 2) 

= 1 ÷ 2 × p × ∫ from negative p to p of f (x) ^ 2 dx, 

where the last equality follow from Parseval’s identity, (6), Section 2.5. 



Exercises 2.6  

17. Integrals involving products of 
trigonometric and exponential functions.  

The task of evaluating certain integrals is often simplified by 
using the com-plex exponential function. The identities  

∫ e ^ a × x × cos b × x dx = e ^ a × x ÷ a ^ 2 + b ^ 2 × (a × cos b 
× x + b × sin b × x) +C  

and  

∫ e ^ a × x × cos b × x dx = e ^ a × x ÷ a ^ 2 + b ^ 2 × (negative 
b × cos b × x + a × sin b × x) +C  

provide beautiful illustrations of this method. As you may 
recall from your calculus courses, it takes two integrations 
by parts to evaluate each integral. Now you will be able to 
obtain both integrals at once, by using the complex 
exponential.  

(a) Let I_1 denote the first integral, and I_2 denote the 
second. Show that  
I_1 + i × I_2 = ∫ e ^ (a + i × b) × dx = 1 ÷ a + i × b × e ^ 
(a + i × b) × x +C. 

(b) Conclude that  
I_1 + i × I_2 = a – i × b ÷ a ^ 2 + b ^ 2 × e ^ a × x × 
(cos b × x + i × sin b × x) + C. 

(c) Obtain the desired formulas for I_1 and I_2 by 
equating real and imaginary parts in (b).  

18.  

(a) Prove De Moivre's identity which states that  
cos n × Θ + i × sin n × Θ = (cos Θ + i × sin Θ) ^ n.  
[Hint: Use Euler's identity and basic properties of 
the exponential function.]  

(b) Use De Moivre's identity with n = 2 to show that  
cos 2 × Θ = cos^2 Θ – sin^2 Θ and sin 2 × Θ = 2 × sin 
Θ × cos Θ.  

(c) Derive the identities: cos 3 × Θ = 4 × cos^3 Θ – 3 × 
cos Θ and sin 3 × Θ = 3 × sin Θ − 4 × sin^3 Θ.  

Exercises 19-26 are intended to familiarize you with the 
integral of a complex-valued function.  

19.  

Use the definition of the integral for complex-valued 
functions to show that, for any complex number α ≠ 0,  

∫ e ^ α × t dt = 1 ÷ α × e ^ α × t + C.  

20.  

If h and g are complex-valued functions and α and β are 
complex numbers, prove that  

∫ from a to b of (α × h (t) + β × g (t)) dt = α × ∫ from a to b of 
h (t) + β × ∫ from a to b of g (t) dt. 

Evaluate the following integrals. Take n to be an integer.  

21.  

∫ from 0 to 2 × π of (e ^ i × t + 2 × e ^ negative 2 × i × t) dt. 

22.  

∫ from 0 to π of t × e ^ 2 × i × t dt. 

23.  

∫ 1 ÷ cos t – i × sin t dt. 

24.  

∫ from 0 to 2 × π of (3 × t − 2 × cos t + 2 × i × sin t) dt.  

25.  

∫ 1 + i × t ÷ 1 – i × t dt  

26.  

∫ from negative π to π of (1 − t) × e ^ negative i × n × t dt.  



2.7 Forced Oscillations  
In this section we use Fourier series to solve the nonhomogeneous differential equation 

(1) μ × d^2 y ÷ dt^2 + c × dy ÷ dt + k × y = F (T), 

where y > 0, c ≥ 0, and k > 0 are arbitrary constants, and F (t) is a given 2 × p-periodic function of t. Equations of this kind arise in 
modeling the oscillations of a spring-mass system with a periodic driving force (Figure 1), and its analogous RLC-circuit with a 
periodic electromotive force. We treat the case c > 0, which corresponds to a spring-mass system with damping. The case c = 0 is 
simpler and will be discussed in the exercises. 

Figure 1 A spring-mass system. 

Recall that the general solution of (1) is of the form 

(2) y = y_h + y_p, 

where y_h is the general solution of the associated homogeneous equation  

(3) μ × d^2 y ÷ dt^2 + c × dy ÷ dt + k × y = 0, 

and y_p is any particular solution of the nonhomogeneous equation (1) (see Appendix A.1, Theorem 5). Finding y_h is a 
straightforward process, which involves the roots λ_1 and λ_2 of the characteristic equation µ × λ ^ 2 +c × λ + k = 0. Let y_s 
denote the limiting solution or the steady-state solution of (1), as t → ∞.·When c > 0, y_h decays exponentially to zero as t → ∞ 
(see Appendix A.2 and Example 1 below for an illustration) , and it follows from (2) that y_s (t) = lim as t → ∞ of y_p (t).  

We now outline a Fourier series method for finding y_p. We suppose that F (t) is 2 × p-periodic and write its Fourier series:  

(4) F (t) = a_0 + ∑ from n = 1 to ∞ of (a_n × cos n × π ÷ p × t + b_n × sin n × π ÷ p × t), 

where the Fourier coefficients a_n and b_n are given by Theorem 1, Section 2.3. The nth term of the Fourier series,  

(5) f_n (t) = a_n × cos n × π ÷ p × t + b_n × sin n × π ÷ p × t (n = 1, 2, …), 

is a simple sinusoidal component of the input function F (t). It has period 2 × p and frequency (measured in radians per unit of 
time) 

w_n = n × π ÷ p (n = 1, 2, …). 



To find the steady-state response of the system when the driving force is actually equal to one of the f_n's, we must find a 
particular solution of (1), when the left side is equal to f_n (t). In this case, the method of undetermined coefficients (Appendix 
A.2) tells us that a particular solution is of the form  

(6) y_n (t) = α_n × cos n × π ÷ p × t + β_n × sin n × π ÷ p × t (n = 1, 2, ...). 

The function y_n (t) is called the nth normal mode of vibration. It represents the pure harmonic steady-state response of the 
system to f_n (t) and has the same frequency as f_n (t). For an arbitrary 2 × p-periodic driving function F (t), we think of F (t) as 
an infinite superposition of the sinusoidal components f_n (t). Then, because the differential equation is linear, we use an 
(infinite) linear combination of the normal modes y_n (t) and hence try a Fourier series as a steady-state solution of (1).  

THEOREM 1 FORCED OSCILLATIONS  
A particular solution of (1) (with c, μ, k > 0) is given by the Fourier series  

(7) y_p (t) = α_0 + ∑ from n = 1 to ∞ of (α_n × cos n × π ÷ p × t + β_n × sin n × π ÷ p × t), 

where the Fourier coefficients, α_n and β_n, are given by  

(8) α_0 = a_0 ÷ k, α_n = A_n × a_n – B_n × b_n ÷ A_n ^ 2 + B_n ^ 2, β_n = A_n × b_n + B_n × a_n ÷ A_n ^ 2 + B_n ^ 2 

(9) A_n = k – μ × (n × π ÷ p) ^ 2 and B_n = c × n × π ÷ p, n = 1, 2, … 

The solution y_p is also equal to the steady-state solution y_s of (1).  

Because c and k are nonzero, the denominators in (8) are nonzero.  

Proof  

Differentiating the Fourier series (7) term by term, we obtain  

y’_p = ∑ from n = 1 to ∞ of (n × π ÷ p × β_n × cos n × π ÷ p × t – n × π ÷ p × α_n × sin n × π ÷ p × t), 

y’’_p = ∑ from n = 1 to ∞ of (negative (n × π ÷ p) ^ 2 × α_n × cos n × π ÷ p × t – (n × π ÷ p) ^ 2 × β_n × sin n × π ÷ p × t). 

Plugging into (1), using (4), and simplifying, we obtain  

k × α_0 + ∑ from n = 1 to ∞ of [([k – μ × (n × π ÷ p) ^ 2] × α_n + c × n × π ÷ p × β_n) × cos n × π ÷ p × t + (negative c × n × π ÷ p × 
α_n + [k – μ × (n × π ÷ p) ^ 2] × β_n) × sin n × π ÷ p × t] 

= a_0 + ∑ from n = 1 to ∞ of (a_n × cos n × π ÷ p × t + b_n × sin n × π ÷ p × t). 



By the uniqueness of the Fourier coefficients, we must have k × α_0 = and a_0, for n ≥ 1, 

{[k − µ × (n × π ÷ p) ^ 2] × α_n + c × n × π ÷ p × β_n = a_n, negative c n × π ÷ p× α_n + [k – μ × (n × π ÷ p) ^ 2] × β_n = b_n.} 

Simplifying the notation with the help of (9), we obtain  

{A_n × α_n + B_n × β_n = a_n, negative B_n × α_n + A_n × β_n = b_n. 

It is straightforward to show that the solutions α_n and β_n are given by (8).  

We now apply Theorem 1 to analyze the steady-state solution in a forced spring-mass system.  

EXAMPLE 1 Steady-state solution  
The oscillations of a spring-mass system are modeled by the differential equation  

2 × y‘’ + .05 × y’ + 50 × y = F (t), 

where the 2 × π-periodic driving function F (t) is shown in Figure 2. Find the steady-state solution y_s (t).  

Figure 2 Driving force in Example 1 and its periodic extension. 

Solution  

The general solution of the differential equation is y = y_h + y_p, where y_p is a particular solution and y_h is the general 
solution of the homogeneous equation  

2 × y‘’ + .05 × y’ + 50 × y = 0. 

The characteristic equation 2 × λ ^ 2 + .05 × λ + 50 = 0 has roots  

λ = negative .0125 ± i × √ 399.9975 ÷ 4 = negative .0125 ± i × w, where w = √ 399.9975 ÷ 4. 

Thus the general solution of the homogenous equation is  

y_h (t) = e ^ negative .0125 × t × (c_1 × cos w × t + c_2 × sin w × t), 

where c_1 and c_2 are constants (see Appendix A.2). Clearly, y_h decays exponentially to zero as t → ∞. So the steady-state 
solution of the system, y_s, is given by y_p, which we now derive by applying Theorem 1.  

The driving force F (t) can be extended to a periodic function, with period 2 × π, as shown in Figure 2. Its Fourier series follows 
from Exercise 5, Section 2.3: For t > 0,  

F (t) = 10 × ∑ from m = 0 to ∞ of 1 ÷ (2 × m + 1) ^ 2 × cos (2 × m + 1) × t. 

Thus the Fourier coefficients of F (t) are  

a_0 = 0, a_2 × n + 1 = 10 ÷ (2 × m + 1) ^ 2, a_2 × m = 0, b_n = 0 for all n. 



Using Theorem 1 to derive the Fourier series of the steady-state solution, we find  

A_n = 50 − 2 × n ^ 2, B = .05 × n, and A_n ^ 2 + B_n ^ 2 = 4 × n ^ 4 - 199.9975 × n ^ 2 + 2500. 

So α_0 = 0, α_2 × m = 0, β_2 × m = 0, and  

α_2 × m + 1 = A_2 × m + 1 × a_2 × m + 1 ÷ A_2 × m + 1 ^ 2 + B_2 × m + 1 ^ 2 

= 10 × (50 – 2 × (2 × m + 1) ^ 2) ÷ (2 × m + 1) ^ 2 × (4 × (2 × m + 1) ^ 4 − 199.9975 × (2 × m + 1) ^ 2 + 2500) 

β_2 × m + 1 = B_2 × m + 1 × a_2 × m + 1 ÷ A_2 × m + 1 ^ 2 + B_2 × m + 1 ^ 2 

= .5 ÷ (2 × m + 1) ^ 2 × (4 × (2 × m + 1) ^ 4 − 199.9975 × (2 × m + 1) ^ 2 + 2500) 

Numerical values of these coefficients, approximated up to five decimals, are shown in Table 1. 

k 0 1 2 3 4 
α_2 × k + 1 .02083 .00347 0 negative .00043 negative .00011 
β_2 × k + 1 negative .00002 negative .00002 negative .16 0 0 

Table 1 Fourier coefficients of the steady-state solution in Example 1.  

By (7), y_s (t) ≈ .02083 × cos t − .00002 × sin t + .00347 × cos 3 × t − .00002 × sin 3 × t − .16 × sin 5 × t. It is interesting to note that 
the amplitude of the 5th normal mode, y_5 (t) ≈ negative .16 × sin 5 × t, is very large as compared to the other normal modes. As 
a result, the 5th normal mode dominates the solution. Consequently, the oscillations of the steady-state solution are almost 
equal to the pure harmonic oscillations of the 5th normal mode y_5 (t), and its frequency is (almost) equal to the frequency of 
y_5 (t), which is five times the frequency of the driving force (Figure 3).  

Figure 3 Steady-state solution y_p and the dominant normal mode y_5 in Example 1. 

Dominant Term of a Steady-State Solution  
To explain this somewhat curious fact about a dominant term in the Fourier series in Example 1, we consider the free motion of 
the spring, which occurs when there is no damping (c = 0) and no external force (F (t) = 0). In this case, the differential equation 
becomes μ × y‘’ + k × y = 0. Its solution, which describes the free motion of the spring, is y = c_1 × cos √ k ÷ μ × t + c_2 × sin √ k ÷ 
μ × t. The frequency of the free motion, or natural frequency of the spring, is  

w_0 = √ k ÷ μ. 

It is well known and intuitively clear that if a simple harmonic driving force with frequency equal to wo is applied to the 
undamped system, then reso-nance will occur and the spring will undergo oscillations of increasing am-plitude that will cause 
the system to break (Exercises 19-20).  



When an arbitrary periodic driving force F (t) is applied, the steady-state solution is given by the Fourier series (7). We will 
compute the amplitude C_n of each normal mode y_n to determine if there is a dominant component. Let negative π < Φ_n < π 
be such that  

cos Φ_n = α_n ÷ √ α_n ^ 2 + β_n ^ 2, sin Φ_n = β_n ÷ √ α_n ^ 2 + β_n ^ 2 

Then  

y_n (t) = α_n × cos n × π ÷ p × t + β_n × sin n × π ÷ p × t 

= √ α_n ^ 2 + β_n ^ 2 × (α_n ÷ √ α_n ^ 2 + β_n ^ 2 × cos n × π ÷ p × t + β_n ÷ √ α_n ^ 2 + β_n ^ 2 × sin n × π ÷ p × t) 

= √ α_n ^ 2 + β_n ^ 2 × (cos Φ_n × cos n × π ÷ p × t + sin Φ_n × sin n × π ÷ p × t) 

= √ α_n ^ 2 + β_n ^ 2 × cos (n × π ÷ p × t – Φ_n). 

Since the cosine varies between 1 and negative 1, it follows that  

(10) C_n = √ α_n ^ 2 + β_n ^ 2 

The angle Φ_n is called the phase angle or phase lag.  

To find the dominant normal mode in the solution (7), we can use straightforward but tedious calculus techniques to find the 
values of n that maximize C_n. Often we can avoid these computations by appealing to a rule of thumb, based on resonance, 
that states that the dominant normal mode is the one whose frequency is closest to the natural frequency of the spring. Even if 
the frequency of F (t) is distinct from the natural frequency of the spring, one of the hidden higher frequencies of the f_n's may 
be very close or equal to the natural frequency of the spring, and this in turn may cause a normal mode to have a very large 
amplitude.  

In Example 1, the natural frequency of the spring is w_0 = 5. The frequency of f_n (t) is w_n = n. Hence the frequency of f_5 (t) is 
actually equal to the natural frequency of the spring. Numerical values of the amplitudes of the normal modes are shown in 
Table 2.  

k 0 1 2 3 4 
C_2 × k + 1 .02083 .00347 .16 .00043 .00011 

Table 2 Amplitudes of normal modes in Example 1.  

As expected, the 5th normal mode, y_5 (t), has a very large amplitude, relative to the other normal modes; consequently, y_5 (t) 
dominates the vibrations of the spring.  



In the following example, we give an important application of the fore-going Fourier series analysis of the steady-state solution. 
We will show how a driving force can be modified in order to suppress the large oscillations of a steady-state response.  

EXAMPLE 2 Dominant term in a steady-state solution  
Consider a mechanical (or electrical) system modeled by the differential equation  

2 × y’’ + .01 × y’ + 18.01 × y = F (t), 

where F (t) is a 2 × π-periodic function such that F (t) = 1 if 0 < t < π and negative 1 if π < t < 2 × π. The steady-state solution of 
this equation, shown in Figure 4, has very large oscillations that can destroy the system. Modify the input function F (t) by adding 
to it a single sinusoidal wave in order to suppress the large oscillations of the steady-state response.  

Figure 4 Initial steady-state output y_s (t). 

Solution  

Let y_s (t) denote the steady-state response to F (t). Then y_s = y_p, where y_p is given by (7). The natural frequency of the 
spring is  

w_0 = √ k ÷ μ = √ 18.01 ÷ 2 ≈ 3.00083. 

By appealing to Exercise 1, Section 2.3, we find the Fourier series of F (t):  

F (t) = 4 ÷ π × ∑ from n = 0 to ∞ of sin (2 × m + 1) × t ÷ 2 × m + 1. 

Let w_2 × m + 1 denote the frequency of f_2 × m + 1 (t) = 4 ÷ π × sin (2 × m + 1) × t ÷ 2 × m + 1. Then w_2 × m + 1 = 2 × m + 1, and 
so the frequency of f_3 (t) is closest to the natural frequency of the spring. It follows from our previous discussion that the 
steady-state solution y_s (t) is most likely dominated by the 3rd normal mode y_3 (t).  

Let us compute the amplitude of y_3 (t) by using (10). We have 

a_3 = 0, b_3 = 4 ÷ 3 × π, A_3 = .01, B_3 = .03, α_3 ≈ negative 12.7324, β_3 ≈ 4.24413, C_3 = √ α_3 ^ 2 + β_3 ^ 2 ≈ 13.4211. 

Thus y_3 (t) ≈ negative 12.7324 × cos 3 × t + 4.24413 × sin 3 × t (Figure 5), and its amplitude C_3 is clearly very large. In fact, 
comparing Figures 4 and 5, we see that the steady-state solution y_s is almost equal to y_3, which confirms our guess that y_3 
dominates the oscillations of the system. To remove or cancel out y_3 from y_s, we must remove f_3 (t) from the Fourier series 
of F (t), which is the term that is causing the response y_3 (t). Thus, subtract from F (t) the sinusoidal force f_3 (t) = 4 ÷ 3 × π × sin 
3 × t. The modified input function is now F (t) – 4 ÷ 3 × π × sin 3 × t (Figure 6). The modified response is y_s (t) minus the 
response to f_3 (t) = 4 ÷ 3 × π × sin 3 × t; that is, minus y_3 (t). Thus the modified response is y_s (t) – y_3 (t).  

Figure 5 The 3rd normal mode y_3 (t). 

Figure 6 Initial input F; its 3rd harmonic component f_3; modified input F – f_3. 

Using Theorem 1, we have computed the first five nonzero Fourier coefficients of Ys and used them to plot an approximation of 
Ys in Figure 7. By deleting y_3 from the Fourier series of y_s, we have obtained an approximation of the modified response  



y_s – y_3, which we have also plotted in Figure 7. As you can see, the output function y_s is very similar to y_3 in Figure 5. In 
particular, its frequency is three times the frequency of the input function F(t). The amplitude of the modified output y_s – y_3 is 
about .06, which is much smaller than the amplitude of y_s Thus by removing from F (t) the component whose frequency is 
closest to the natural frequency of the system, we have succeeded in suppressing the large oscillations of the system.  

Figure 7 Initial and modified steady-state outputs.

Exercises 2. 7 
In Exercises 1-4,  

(a) find the general solution of 
the differential equation.  

(b) Determine the steady-state 
solution.  

1.  

y’’ + 2 × y’ + y = 25 × cos 2 × t.  

2.  

y’’ + 2 × y’ + 5 × y = 10 × cos t.  

3.  

4 × y’’ + 4 × y’ + 17 × y = 1.  

4.  

9 × y’’ + 6 × y’ + 10 × y = sin t.  

In Exercises 5-8,  

(a) use Theorem to find the 
steady-state solution of the 
given equation.  

(b) Verify your answer by 
plugging it back into the 
differential equation.  

5.  

y’’ + 4 × y’ + 5 × y = sin t − sin 2 × t.  

6.  

y’’ + 2 × y’ + 5 × y = cos t − sin t.  

7.  

y’’ + 2 × y’ + 2 × y = cos t + cos 2 × t.  

8.  

y’’ + 2 × y’ + 2 × y = sin t + 2 × cos 2 × 
t.  

In Exercises 9-12, you are given a 
differential equation that describes 
the oscillations of a spring-mass 
system.  

(a) Compute the natural 
frequency of the spring.  

(b) Approximate the frequencies 
of the first six nonzero 
normal modes and decide 
which normal mode will 
dominate the steady-state 
solution.  

9.  

y’’ + .05 × y’ + 10.01 × y = F (t), where 
F (t) is as in Example 2. 

10.  

8 × y’’ + .01 × y’ + 15.01 × y = F (t), 
where F (t) is as in Example 1.  

11.  

4 × y’’ + .01 × y’ + 16 × π ^ 2 × y = F 
(t), where F (t) is as in Figure 8.  

12.  

4 × y’’ + y’ + 4 × π ^ 2 × y = F (t), 
where F (t) is as in Figure 8.  

Figure 8 Driving function for 
Exercises 11 and 12.  

13.  

Find the dominant normal mode in 
Exercise 9 and compute its 
amplitude.  

14.  

Find the dominant normal mode in 
Exercise 10 and compute its 
amplitude.  

15.  

Find the first three nonzero normal 
modes in Exercise 9 and compute 
their amplitudes.  

16.  

Find the first three nonzero normal 
modes in Exercise 10 and compute 
their amplitudes.  

17. 

(a) How would you modify the 
input function F (t) in 
Exercise 9 in order to control 
the size of the oscillations of 
the steady-state solution? 
What is the modified input 
function?  

(b) Describe the Fourier series of 
the modified steady-state 
solution and compute its first 
two nonzero normal modes.  

(c) Plot an approximation of the 
steady-state solution and of 
the modified steady-state 
solution.  

18.  

Repeat Exercise 17 using the 
differential equation of Exercise 10.  

19. System without 
damping.  

Consider the differential equation  

µ × y’’ + k × y = F_0 × cos w × t (µ, k > 
0). 



2.8 Proof of the Fourier Series Representation Theorem 

DIRICHLET KERNEL 
For any real number x ≠ 2 × k × π (k an integer), we have 

(2) 1 + 2 × cos x + 2 × cos 2 × x + … + 2 × cos N × x = sin [(N + 1 ÷ 2) × x] ÷ sin x ÷ 2. 

For x = 2 × k × π, the left side of (2) is equal to 2 × N + 1, since each cosine term is equal to 1. The right side of (2) is not defined at 
x = 2 × k × π, because the denominator vanishes at these points; however, by l’Hospital's rule,  

lim as x → 2 × k × π of sin [(N + 1 ÷ 2) × x] ÷ sin x ÷ 2 = lim as x → 2 × k × π of 2 × (N + 1 ÷ 2) × cos [(N + 1 ÷ 2) × x] ÷ cos x ÷ 2 

= (2 × N + 1) × cos (k × π + 2 × k × N × π ÷ cos k × π 

= 2 × N + 1. 

So formula (2) holds for x =2 × k × π, if at these points we interpret the right side in the limit. To prove (2), consider the 
equivalent formula  

sin x ÷ 2 + ∑ from j = 1 to N of 2 × sin x ÷ 2 × cos j × x = sin [(N + 1 ÷ 2) × x], 

which is obtained by multiplying both sides of (2) by sin x ÷ 2. Using the trigonometric identity 2 × sin a × cos b = sin (b + a) – sin 
(b − a), we obtain  

sin x ÷ 2 + ∑ from j = 1 to N of 2 × sin x ÷ 2 × cos j × x = sin x ÷ 2 + {∑ from j = 1 to N of (sin (j + 1 ÷ 2) × x – sin (j – 1 ÷ 2) × x)} 
(Telescoping sum) 

= sin x ÷ 2 − sin x ÷ 2 + sin (N + 1 ÷ 2) × x 

= sin (N + 1 ÷ 2) × x, 

which proves the desired formula.  

We define the Dirichlet kernel for N = 1, 2, ..., by  

(3) D_N (x) = 1 + 2 × cos x + 2 × cos 2 × x + … + 2 × cos N × x = sin [(N + 1 ÷ 2) × x] ÷ sin x ÷ 2. 

The Dirichlet kernel is a function (Figure 1) that plays a central role in the study of Fourier series because of the following 
representation of the partial sums of Fourier series in terms of this kernel.  

Figure 1 The Nth Dirichlet kernel, D_N (x), for N = 1, 2, 5. We have D_N (0) = 2 × N + 1. 

LEMMA 1 DIRICHLET KERNEL AND FOURIER SERIES 
If f is a 2 × π-periodic piecewise continuous function and N ≥ 1, then 

s_N (x) = 1 ÷ 2 × π × ∫ from negative π to π of f (t) × D_N (x – t) dt = 1 ÷ 2 × π × ∫ from negative π to π of f (x – t) × D_N (t) dt, 

where D_N is the Nth Dirichlet kernel (3). 

Proof  

The first equality is immediate from (1) and (3), because the expression inside the big parentheses in (1) is precisely the Dirichlet 
kernel D_N evaluated at  



the point x − t. To prove the second equality, start with the first one and use the change of variables T = x − t, dT = negative dt. 
Then  

s_N (x) = 1 ÷ 2 × π × ∫ from negative π to π of f (t) × D_N (x – t) dt = negative 1 ÷ 2 × π × ∫ from x + π to x – π of f (x – T) × D_N (T) 
dT 

= 1 ÷ 2 × π × ∫ from x – π to x + π of f (x – T) × D_N (T) dT 

= 1 ÷ 2 × π × ∫ from negative π to π of f (x – T) × D_N (T) dT 

where the last equality follows because we are integrating a 2 × π-periodic function over an interval of length 2 × π (Theorem 1, 
Section 2.1).  

The following basic properties of the Dirichlet kernel will be needed in proofs.  

• The Dirichlet kernel is 2 × π-periodic and even: D_N (x) = D_N (negative x) for all x.  
• For all N = 1, 2, ..., we have  

(4) 1 ÷ 2 × π × ∫ from negative π to π of D_N (x) dx = 1 

These properties follow from (3). As an illustration, let us prove (4). Write  

1 ÷ 2 × π × ∫ from negative π to π of D_N (x) dx = {1 ÷ 2 × π × ∫ from negative π to π of dx} = 1 + 1 ÷ π × ∫ from negative π to π of 
(cos x + cos 2 × x + … + cos N × x) dx, 

and (4) follows from the fact that ∫ from negative π to π of cos j × x dx = 0 for all j ≠ 0. 

Identity (4) is key to proving convergence of partial sums of Fourier series, because of the following formulas that follow from 
(4).  

LEMMA 2 
If f is a 2 × π-periodic piecewise continuous function and N ≥ 1, then 

s_N (x) – f (x) = 1 ÷ 2 × π × ∫ from negative π to π of (f (x – t) – f (x)) × D_N (t) dt 

= 1 ÷ π × ∫ from negative π to π of f (x – t) – f (x) ÷ 2 × sin t ÷ 2 × sin [(N + 1 ÷ 2) × t] dt. 

Proof  

Using Lemma 1 and (4), we see that  

s_N (x) – f (x) = 1 ÷ 2 × π × ∫ from negative π to π of f (x – t) × D_N (t) dt – f (x) 

= 1 ÷ 2 × π × ∫ from negative π to π of f (x – t) × D_N (t) dt – f (x) × {1 ÷ 2 × π × ∫ from negative π to π of D_N (t) dt} = 1, 

and the first desired equality follows upon combining the integrals. The second equality follows from the first and (3).  



The following lemma is an important property of Fourier coefficients. It is so fundamental that it bears the names of two great 
mathematicians. (The lemma holds for a much larger class of functions than the piecewise continuous functions.)  

LEMMA 3 RIEMANN-LEBESGUE LEMMA  
Suppose that f is a 2 × π-periodic piecewise continuous function. Then  

(5) lim as n → ∞ of ∫ from negative π to π of f (x) × cos n × x dx = 0 and lim as n → ∞ of ∫ from negative π to π of f (x) × sin n × x 
dx = 0 

More generally, if α is any fixed real number, then  

(6) lim as n → ∞ of ∫ from negative π to π of f (x) × cos [(n + α) × x] dx = 0 and lim as n → ∞ of ∫ from negative π to π of f (x) × sin 
[(n + α) × x] dx = 0 

Proof 

We will only establish the first limit in (5); the second one follows similarly. Just so that we do not lose the flavor of the proof, we 
suppose in this part that f is continuous on [negative π, π]. The technical details that are required for piecewise continuous 
functions are given at the end of the section.  

A well-known result from advanced calculus states that if f is continuous on a closed and bounded interval such as [negative π, 
π], then it is uniformly continuous on [negative π, π]. Uniform continuity is a stronger property than continuity (see the exercises 
for related properties and examples). It states that |f (x) – f (x – δ)| → 0 for all x in [negative π, π] (or uniformly in x) as δ → 0.  

From the identity cos a= negative cos (a + π), we get cos n × x =-cos (n × (x + π ÷ n)). Using the substitution X = x + π ÷ n, we have  

∫ from negative π to π of f (x) × cos n × x dx = negative ∫ from negative π to π of f (x) × cos (n × (x + π ÷ n)) dx 

= negative ∫ from negative π + π ÷ n to π + π ÷ n of f (x – π ÷ n) × cos n × x dx 

= negative ∫ from negative π to π of f (x – π ÷ n) × cos n × x dx 

where the last equality follows from Theorem 1, Section 2.1, since the integrands are 2 × π-periodic. Hence  

2 × ∫ from negative π to π of f (x) × cos n × x dx = ∫ from negative π to π of (f (x) – f (x – π ÷ n)) × cos n × x dx 

But for any function |∫ from a to b of f (x) dx| ≤ ∫ from a to b of |f (x)| dx and |cos n × x| ≤ 1; so 

|∫ from negative π to π of f (x) × cos n × x dx| = 1 ÷ 2 × |∫ from negative π to π of (f (x) – f (x – π ÷ n)) × cos n × x dx| 

≤ 1 ÷ 2 × ∫ from negative π to π of |(f (x) – f (x – π ÷ n)) × cos n × x| dx 

≤ 1 ÷ 2 × ∫ from negative π to π of |f (x) – f (x – π ÷ n)| dx ≤ 1 ÷ 2 × (2 × π) × M_n, 



where M_n = max |f (x) – f (x – π ÷ n)| for x in [negative π, π]. Since f is uniformly continuous, the difference |f (x) – f (x – π ÷ n)| 
tends to 0 uniformly for all x in [negative π, π], as π ÷ n → 0. So, as n → ∞, M_n → 0, implying that |∫ from negative π to π of f 
(x) × cos n × x dx| → 0, and thus completing the proof in the case f is continuous.  

To prove (6), use the addition formula for the sine and cosine and apply (5). For example, using cos [(n + α) × x] = cos (n × x) × cos 
(α × x) – sin (n × x) × sin (α × x), we get  

∫ from negative π to π of f (x) × cos [(n + α) × x] dx 

= ∫ from negative π to π of [f (x) × cos (α × x)] × cos n × x dx − ∫ from negative π to π of [f (x) × sin (α × x)] × sin n × x dx 

Applying (5) to the functions f (x) × cos (α × x) and f (x) × sin (α × x), it follows that both terms on the right side of the displayed 
equation tend to 0 as n → 0. 

We are now ready to prove that s-N (x) → f (x) as N → ∞ at the points where f’ (x) exists. Equivalently, by Lemma 2, we must 
show that  

s_N (x) – f (x) = 1 ÷ π × ∫ from negative π to π of f (x – t) – f (x) ÷ 2 × sin t ÷ 2 × sin [(N + 1 ÷ 2) × t] dt → 0 as N → ∞ 

We will use a clever trick. For fixed x, define 

g (t) = f (x – t) – f (x) ÷ 2 × sin t ÷ 2 if 0 < |t| ≤ π, f’ (x) if t = 0. 

Because f is piecewise continuous, it follows that g is piecewise continuous for all t ≠ 0. At t = 0, we have  

lim as t → 0 of g (t) = lim as t → 0 of f (x – t) – f (x) ÷ 2 × sin t ÷ 2 

= lim as t → 0 of f (x – t) – f (x) ÷ t × lim as t → 0 of t ÷ 2 × sin t ÷ 2 

= f’ (x) = g (0) 

where we have used the fact that f’ (x) exists and lim as t → 0 of t ÷ 2 × sin t ÷ 2. So the function g (t) is continuous at t = 0, and 
hence it is piecewise continuous on the entire interval [negative π, π]. Note that  

s_N (x) – f (x) = 1 ÷ π × ∫ from negative π to π of g (t) × sin [(N + 1 ÷ 2) × t] dt. 

Applying (6), we see that  

lim as N → ∞ of ∫ from negative π to π of g (t) × sin [(N + 1 ÷ 2) × t] dt = 0, 

and from this lim as N → ∞ of s_N (x) – f (x) = 0, completing the proof.  



The Exceptional Points  
In this part we provide technical details to prove Lemma 3 for piecewise continuous functions and then prove the convergence 
of the partial sums of the Fourier series at the exceptional points where f’ (x) does not exist.  

To reduce a proof from a piecewise continuous function to a continuous function, we can add a piecewise linear correction term, 
which can be handled separately. This useful process will be clarified in the proofs; for now let us describe our linear correction 
term.  

LEMMA 4 LINEAR CORRECTION  
Suppose that f (x) is a 2× π-periodic. piecewise continuous function. Then there is a piecewise linear function h (x) with finitely 
many discontinuities in [negative π, π], such that the function g (x) = f (x) – h (x) is 2 × π-periodic and continuous for all x. 

Proof 

The construction of h is best described by a figure (see Figure 2). It is enough to define h on the interval [negative π, π]. Since f is 
piecewise continuous, it has at most a finite number of discontinuities in [negative π, π], say, negative π = x_0 < x_1 < … < x_n = 
π. Define h (x) on each subinterval (x_j, x_j + 1) to be a linear function such that h (x_j^+) = f (x_1^+) and h (x_j + 1^−) = f (x_j + 
1^−). Then g (x) = f (x) – h (x) is continuous for all x ≠ x_j, being the difference of two continuous functions. For x = x_j, we have g 
(x_j^+) = f (x_j^+) – h (x_j^+) = 0 and g (x_j^−) = f (x_j^−) – h (x_j^×) = 0.Hence g is also continuous at x_j and so g is continuous 
for all x.  

Figure 2 The function h (x) is piecewise linear. Its discontinuities are the same as those of f (x). They are built in order to cancel 
the discontinuities of f(x) by adding negative h (x). 

Completion of the Proof of Lemma 3.  

As before, we will only establish the first limit in (5). Using integration by parts, we have  

∫ from a to b of (c × x + d) × cos n × x dx = (c × x + d) × sin n × x ÷ n from a to b – c × ∫ from a to b of sin n × x ÷ n dx 

= (c × b + d) ×sin n × b − (c × a + d) × sin n × a ÷ n + c × cos n × b – cos n × a ÷ n ^ 2 → 0, 

as n → ∞. If f is piecewise linear, the first integral in (5) is a finite sum of integrals of the form ∫ from a to b of (c × x + d) × cos n × 
x dx, each of which tends to 0 as n → ∞, and so the integral itself tends to 0 as n → ∞. This shows that the first limit in (5) is true 
if f is piecewise linear. If f is piecewise continuous, we apply Lemma 4 and write f (x) = g (x) + h (x), where g is continuous and h is 
piecewise linear. Then ∫ from negative π to π of f (x) × cos n × x dx = ∫ from negative π to π of g (x) × cos n × x dx + ∫ from 
negative π to π of h (x) × cos n × x dx → 0 as n → ∞, by the previous two cases.  

Completion of the Proof of Theorem 1, Section 2.2.  

To prove that  

lim as N → ∞ of s_N (x) = f (x^+) + f (x^−) ÷ 2, 

we will modify the proof in the case where f’ (x) exists. We will outline the steps and leave the details to the exercises.  

Use the fact that D_N is even and Lemma 1 to show that  

s_N (x) = 1 ÷ π × ∫ from 0 to π of f (x – t) + f (x + t) ÷ 2 × D_N (t) dt 



(Exercise 6): Since 1 ÷ π × ∫ from 0 to π of D_N (t) dt = 1 (Exercise 1), we have  

s_N (x) − f (x^+) + f (x^−) ÷ 2 = 1 ÷ π × ∫ from 0 to π of f (x + t) – f (x^+) ÷ 2 × D_N (t) dt + 1 ÷ π × ∫ from 0 to π of f (x – t) – f (x^−) ÷ 
2 × D_N (t) dt 

= R_1 + R_2. 

To show that R_1 → 0 as N → ∞, define  

g (t) = f (x + t) – f (x^+) ÷ 2 × sin t ÷ 2 if 0 < t ≤ π, f’ (x^+) if t = 0, 0 if t < 0. 

Then, because f’ is piecewise continuous at 0, it follows that g (t) is piecewise continuous on the entire interval [negative π, π] 
(Exercise 8). Applying (6), we see that lim as N → ∞ of ∫ from negative π to π of g (t) × sin [(N + 1 ÷ 2) × t] dt = 0, and hence R_1 
→ 0 as N → ∞. The proof that R_2 → 0 as N → ∞ is similar and will be omitted (Exercise 9). This completes the proof. 

Exercises 2.8  

1. Properties of the Dirichlet kernel.  

Prove the following properties.  

(a) D_N (x) is an even function and D_N (0) = 2 × N + 1.  
(b) 1 ÷ π × ∫ from 0 to π of D_N (x) dx = 1 
(c) 1 ÷ 2 × π × ∫ from negative π to π of D^2_N (x) dx = 

2 × N +1 [Hint: Parseval's identity.]  
(d) D_N (±π) = 0 if and only if N is odd. How many zeros 

does D_N have in the interval [negative π, π]? [Hint: 
Look at Figure 1]  

2. A derivation of (2) using complex numbers.  

(a) Show that  

negative 1 + 2 × ∑ from j = 0 to ∞ of e ^ i × j × x = negative 1 
– 2 × 1 – e ^ i × (N + 1) × x ÷ 1 – e ^ i × x. 

[Hint: Let z = e ^ i × x, then sum a geometric progression.]  

(b) Multiply and divide the fraction by e ^ negative i × x ÷ 2, 
simplify with the help of the identities (1), Section 2.6, and 
get  

negative 1 + 2 × ∑ from j = 0 to ∞ of e ^ i × j × x = sin (N + 1 ÷ 
2) × x ÷ sin x ÷ 2 + i × cos x ÷ 2 – cos (N + 1 ÷ 2) × x ÷ sin x ÷ 2. 

(c) Derive (2) and the following formula. for the sums of 
sines:  

sin x + sin 2 × x + ... + sin N × x = cos x ÷ 2 – cos (N + 1 ÷ 2) × x 
÷ 2 × sin x ÷ 2. 



3. Complex form of the Dirichlet kernel.  

(a) Show that D_N (x) = ∑ from j = negative N to N of e 
^ i × j × x.  

(b) Let n denote an integer and D_N-hat (n) the nth 
complex Fourier coefficient of D_N (x). Thus  
D_N-hat (n) = 1 ÷ 2 × π × ∫ from negative π to π of 
D_N (x) × e ^ negative i × n × x dx. 
Conclude from (a) that D_N-hat (n) = 1 if |n| ≤ N 
and 0 otherwise.  

4.  

Show that f (x) = x ^ 2 is not uniformly continuous on the 
real line.  

5.  

Show that f (x) = 1 ÷ x is not uniformly continuous on (0, 1].  

6. A variant of Lemma 2.  

Suppose that f is a 2 × π-periodic piecewise continuous 
function, and let s_N (x) denote the Nth partial sum of its 
Fourier series. Show that  

s_N (x) = 1 ÷ π × ∫ from 0 to π of f (x + t) + f (x – t) ÷ 2 × D_N 
(t) dt. 

7. A variant of Lemma 3.  

Show that Lemma 3 remains valid if we replace all integrals 
over [negative π, π] by integrals over an arbitrary bounded 
interval [a, b]. [Hint: Consider two cases. Case 1: [a, b] is 
contained in [negative π, π]. Extend your function to 

[negative π, π] by setting it equal 0 outside [a, b]. Then 
apply Lemma 3. Case 2: [a, b] is arbitrary. Reduce to Case 1.] 

8. 

Suppose that f is a 2 × π-periodic piecewise smooth 
function. For fixed x in [negative π, π], define  

g (t) = f (x + t) – f (x^+) ÷ 2 × sin t ÷ 2 if 0 < t ≤ π, f’ (x^+) if t = 
0, 0 if negative π ≤ t < 0. 

(a) Show that g (0^−) = 0, g (0^+) = f’ (x^+), and 
conclude that g is piecewise continuous on 
[negative π, π]. [Hint: To prove the second part, you 
need to show that  
lim as t → 0^+ of f (x + t) – f (x^+) ÷ t = f’ (x^+) 
For this purpose, apply the mean value theorem on 
(x, x + t), then let t → 0^+.] 

(b) Show that  
1 ÷ π × ∫ from 0 to π of f (x + t) – f (x^+) ÷ 2 × D_N (t) 
dt → 0 as N → ∞. 

9.  

Modify the outlined proof in Exercise 8 to show that  

1 ÷ π × ∫ from 0 to π of f (x − t) – f (x^−) ÷ 2 × D_N (t) dt → 0 
as N → ∞. 

10.  

Combine the results of Exercises 8 and 9 to show that  

s_n (x) – f (x^+) + f (x^−) ÷ 2 → 0 as N → ∞. 



2.9 Uniform Convergence and Fourier Series  
In this section we study the important topic of uniform convergence and give necessary and sufficient conditions for the uniform 
convergence of the partial sums of the Fourier series of a piecewise smooth function.  

Let us go back to the first two examples of Fourier series that we encountered in this chapter, Examples 1 and 2 of Section 2.2:  

f (x) = ∑ from n = 1 to ∞ of sin n × x ÷ n and g (x) = π ÷ 2 + 4 ÷ π × ∑ from k = 0 to ∞ of cos (2 × k + 1) × x ÷ 2 × k + 1) ^ 2. 

Figure 1 Pointwise convergence.  

Figure 2 Uniform convergence.  

The partial sums of these series, shown in Figures 1 and 2, display markedly different behaviors. The partial sums in Figure 2 
converge "nicely" on the interval [negative π, π] (you can hardly see a difference between the function and the fifth partial sum 
of its Fourier series). By contrast, the partial sums in Figure 1 do not converge as nicely on the interval [-Jr, 1T]. In Figure 1 we 
just have pointwise convergence, while in Figure 2 we have uniform convergence on the interval [negative π, π]. These notions 
will form the subject of the last two sections of this chapter. We will aim for a general treatment that applies to Fourier series 
and other important types of infinite series as well.  

Uniform Convergence versus Pointwise Convergence  
In studying series, we are interested in the convergence of the sequence of partial sums. It is thus natural to start our analysis by 
talking about sequences of functions.  

A sequence of functions (f_n) is said to converge pointwise to the function f on the set E, if the sequence of numbers (f_n (x)) 
converges to the number f (x), for each x in E. Note that this definition says nothing about the comparative rates of convergence 
at different points in E.  

Consider the functions f_n (x) = sin n × x ÷ n and g_n (x) = n × x × e ^ negative x + 1 (n = 1, 2, ...) defined for all x in the interval E = 
[0, π]. From the inequality |sin n × x ÷ n| ≤ 1 ÷ n it follows that f_n (x) → 0 as n → ∞. Hence, the sequence (f_n) converges to 0 
pointwise on the interval [0, π].  

We claim that for each x in [0, π], g_n (x) → 0 as n → ∞. Note that g_n (0) = 0 for all n, and so we trivially have g_n (0) → 0 as n 
→ ∞. For  



(fixed) x > 0, using l'Hospital's rule, we get  

lim as n → ∞ of n × x × e ^ negative n × x + 1 = lim as n → ∞ of n × x ÷ e ^ n × x – 1 = lim as n → ∞ of x ÷ x × e ^ n × x – 1 = 0, 

which establishes our claim.  

Figures 3 (a) and (b) show a clear difference in the modes of convergence of the two sequences (f_n) and (g_n) over the interval 
[0, π]. In Figure 3 (a), the graphs of f_n approach 0 at all points uniformly. The graphs of g_n in Figure 3 (b) tend to 0, but not in 
the same way. In fact, for each n, we have g_n (1 ÷ n) = 1, and so the graphs of g_n do not approach 0 in the same uniform way.  

Figure 3 Uniform versus pointwise convergence. 

(a) Uniform convergence. 
(b) Pointwise convergence. 

The functions f_n provide an example of a uniformly convergent sequence. Geometrically this concept is clear from the graphs: 
Given an arbitrarily small positive number (usually denoted ε > 0), if we go far enough along the sequence, the graphs of the 
functions f_n are all within ε of the limit function over the entire interval. Note how this property fails for the sequence (g-n). 
We can state a more rigorous definition of uniform convergence as follows:  

We say that j converges to f uniformly on a set E, and we write f_n → f uniformly on E if, given ε > 0, we can find a positive 
integer N such that for all n ≥ N  

|f (x) – f (x)| < ε for all x in E. 

The key words in this definition are "for all x in E." These require that the entire graph of f_n lies within ε of the graph of f.  

In Figures 3 (a) and (b), we have f (x) = 0 and g (x) = 0 (these are the limits of the sequences (f_n) and (g_n), respectively). The 
convergence in Figure 3 (a) is uniform over the entire interval, while the convergence in Figure 3 (b) is not.  

You should keep in mind that the type of convergence depends crucially on the underlying interval. Going back to Figure 3 (b), 
you can see that  



while the sequence (g_n) fails to converge uniformly on the entire interval [0, π], it does converge uniformly on the interval [1, 
π]. Indeed, if you plot more graphs you will see that (g_n) converges uniformly to 0 on any interval of the form [a, π], as long as a 
> 0.  

Before moving to the subject of series, let us note that the definition of uniform convergence that we just gave extends to 
subsets E of the complex plane or higher dimensional Euclidean spaces, as well as subsets of the real line.  

A series of functions ∑ from k = 0 to ∞ of u_k (x) is said to converge uniformly on a set E to a function u (x) if the sequence of 
partial sums U_n (x) = ∑ from k = 0 to ∞ of u_k (x) converges uniformly to u (x) on E.  

In other words,  

∑ from k = 0 to ∞ of u_k (x) converges uniformly on a set E to a function u (x) if, given ε > 0, there is a positive integer N such 
that for all n ≥ N, we have |∑ from k = 0 to n of u_k (x) – u (x)| < ε for all x in E. 

The following is one of the most useful tests for uniform convergence. Through-out this section E will denote a set of real or 
complex numbers. Typically, E will be taken to be a closed interval of the form [a, b].  

THEOREM 1 WEIERSTRASS M-TEST  
Let (u_k) from k = 1 to ∞ be a sequence of real-or complex-valued functions on E. Suppose that there is a sequence (M_k) from k 
= 0 to ∞ of nonnegative real numbers such that the following two conditions hold:  

(1) |u_k (x)| ≤ M_k for all x in E, 

and  

(2) ∑ from k = 0 to ∞ of M_k < ∞. 

Then ∑ from k = 0 to ∞ of u_k (x) converges uniformly on E.  

Proof 

For (fixed) x in E, the comparison test and (2) show that the series ∑ from k = 0 to ∞ of u_k (x) is (absolutely) convergent. So we 
can define a function u on E by u (x) = ∑ from k = 0 to ∞ of u_k (x)- Now, for all x in E, we have 

|u (x) − ∑ from k = 0 to ∞ of u_k (x)| = |u_n + 1 (x) + u_n + 2 (x) + … | 

≤ |u_n + 1 (x)| + |u_n + 2(x)| + … (triangle inequality) 

≤ ∑ from k = n + 1 to ∞ of M_k (by (1)) 



The last sum, being the tail of a convergent series, tends to zero as n → ∞. Consequently, given ε > 0, we can choose N so that 
|u (x) − ∑ from k = 0 to ∞ of u_k (x)|< ε for all n ≥ N, which implies the uniform convergence of the series.  

Caution:  

The converse of the Weierstrass M-test is not true in general. We can find a uniformly convergent series for which (1) and (2) do 
not hold. (See Example 1, Section 2.10.)  

EXAMPLE 1 Weierstrass M-test  
(a) The Fourier series of the function g(x) in Example 2, Section 2.2 (Figure 1)  

π ÷ 2 + 4 ÷ π × ∑ from k = 0 to ∞ of cos (2 × k + 1) × x ÷ (2 × k + 1) ^ 2 

converges uniformly on the entire real line. To see this, apply the Weierstrass M-test with E equal the real line and M_k = 1 ÷ (2 
× k + 1) ^ 2. Since for all x in E,  

|cos (2 × k + 1) × x ÷ (2 × k + 1) ^ 2 ≤ 1 ÷ (2 × k + 1) ^ 2, 

and ∑ M_k = ∑ 1 ÷ (2 × k + 1) ^ 2< ∞, we conclude from the Weierstrass M-test that the series converges uniformly on E. The 
Fourier series representation theorem tells us that the limit of the series is the function g(x). Hence the series π ÷ 2 + 4 ÷ π × ∑ 
from k = 0 to ∞ of cos (2 × k + 1) × x ÷ (2 × k + 1) ^ 2 converges uniformly to g (x) on the entire real line.  

(b) Let E = [1, ∞), and consider the series  

∑ from k = 0 to ∞ of e ^ negative k × x × sin k × x. 

For all x in E, we have |e ^ negative k × x × sin k × x| ≤ e ^ negative k = M_k. Since  

∑ from k = 0 to ∞ of e ^ negative k = 1 ÷ 1 – e ^ negative 1 = e ÷ e – 1 < ∞ (geometric series) 

the uniform convergence of the given series over the interval E = [1, ∞) follows from the Weierstrass M-test (with M_k = e ^ 
negative k) (see Figure 4).  

Figure 4 Uniform convergence of ∑ from k = 0 to ∞ of e ^ negative k × x × sin k × x in [1, ∞ ). 

Some simple remarks regarding Example 1 are in order.  

Remark 1:  

The Weierstrass M-test, when it applies, tells you that the series converges uniformly, but it does not give you the limit of the 
series. In Example 1 (a), we appealed to the Fourier representation theorem (Theorem 1, Section 2.2) to find this limit.  

Remark 2:  

In applying the Weierstrass M-test with Fourier series, an obvious candidate for the M_k's is M_k = |a_k| + |b_k|.·The reason 
for this is that, for all x, we have |A_k × cos k × x + b_k × sin k × x| ≤ |a_k| + |b_k|. In Example 1 (a), we took M_k = a_k = 1 ÷ (2 × 
k + 1) ^ 2. 



Remark 3:  

Uniform convergence depends on the series and the set E. In Example 1 (b), the series converges uniformly on [1, ∞), but as 
Figure 4 suggests, it does not converge uniformly on [O, ∞).  

Remark 4:  

It is clear that we cannot apply the reasoning in Example 1 (a) to the Fourier series of the sawtooth function ∑ from n = 1 to ∞ of 
sin n × x ÷ n, because the harmonic series ∑ 1 ÷ n diverges. Is this a proof that the series is not uniformly convergent on the 
entire line? The answer is no. But we can use the follow-ing result to establish the failure of uniform convergence on the entire 
real line.  

THEOREM 2 CONTINUITY AND UNIFORM CONVERGENCE 
Suppose that f_n and u_k are continuous functions on E. 

(a) If f_n → f uniformly on E, then f is continuous on E. 
(b) If ∑ from k = 0 to ∞ of u_k converges uniformly to a on E, then u is continuous on E. 

Proof  

(a) Fix x_0 in E. Given c > 0, by uniform convergence we can find a function f_N such that  

|f_N (x) – f (x)| < ε ÷ 3. for all x in E. 

Since f_N is continuous at x_0 there is a δ such that  

|f_N (x_0) – f_N (x)| < ε ÷ 3 

for all x ∈ E with |x – x_0| < δ. Putting these two inequalities together and using the triangle inequality, we find that for |x – 
x_0| < δ we have  

|f (x_0) – f (x)| < |f (x_0) – f_N (x_0)| + |f_N (x_0) – f_N (x)| + |f_N (x) – f (x)| 

< ε ÷ 3 + ε ÷ 3 + ε ÷ 3 = ε, 

which establishes the continuity of f at x_0. Part (b) follows from (a) by taking f_n (x) = ∑ from k = 0 to n of u_k (x) and noting 
that each f_n is continuous, being a finite sum of continuous functions.  

Theorem 2 has an interesting application to Fourier series.  

COROLLARY 1 CONTINUITY OF FOURIER SERIES  
Consider a 2 × p-periodic function f with Fourier series 

a_0 + ∑ from n = 1 to ∞ of (a_n × cos n × π ÷ p × x + b_n × sin n × π ÷ p × x). 

(i) If the Fourier series converges uniformly on E, then f must be continuous on E. Thus, continuity of f is necessary for 
uniform convergence. 

(ii) If the Fourier series converges uniformly on a closed interval of length 2 × p, then it converges uniformly for all x. 
Moreover, f is continuous for all x. 

Proof  

(i) Since each term of the series is continuous on E (it is a sum of a cosine and a sine), it follows from Theorem 2 that the limit 
function f is also continuous  



on E. (ii) If the Fourier series converges uniformly on a closed interval of length 2 × p, then, by periodicity, it converges uniformly 
for all x. By (i), f is continuous for all x. 

Since we can tell beforehand whether a given function is continuous, Corollary 1 is often used to test for the failure of the 
uniform convergence of its Fourier series.  

COROLLARY 2 WHEN UNIFORM CONVERGENCE FAILS  
Let f be a 2× p-periodic piecewise smooth function. If f is not continuous at some point x, then its Fourier series does not 
converge uniformly on any interval that contains x. 

EXAMPLE 2 Failure of uniform convergence for the sawtooth function  
Since the sawtooth function (Example 1, Section 2.1) is not continuous at the points x = 2 × k × π (k = 0, ±1, ±2, ...), its Fourier 
series ∑ from n = 1 to ∞ of sin n × x ÷ n does not converge uniformly on any interval containing any one of these points. In 
particular, the Fourier series does not converge uniformly on the interval [0, π]. (We note, however, that the Fourier series does 
converge uniformly on any closed interval that does not contain any one of the points x = 2 × k × π. This is a more difficult result 
to prove. See Section 2.10.)  

We now complete the picture by giving necessary and sufficient conditions for the uniform convergence of Fourier series.  

THEOREM 3 UNIFORM CONVERGENCE OF FOURIER SERIES  
Suppose that f is piecewise smooth and 2 × p-periodic. Then the Fourier series of f converges uniformly to f on the entire real 
line if and only if f is continuous. 

Proof  

We have already proved that continuity of f is necessary for uniform convergence. We now prove that it is sufficient. We will 
show that the Fourier series converges uniformly. This will complete the proof because we already know that the Fourier series 
of f converges to f pointwise by the Fourier series representation theorem. Write the Fourier series as in Corollary 1. It suffices 
to show that ∑ from n = 1 to ∞ of |a_n| < ∞ and ∑ from n = 1 to ∞ of |b_n| < ∞. We can then take M_n = |a_n| + |b_n| and 
apply the Weierstrass M-test, because ∑ M_n < ∞, and for all x  

|a_n × cos n × π ÷ p × x + b_n × sin n × π ÷ p × x| ≤ |a_n| + |b_n| = M_n. 

We prove that ∑ from n = 1 to ∞ of |a_n| < ∞ and leave the other inequality with the b_n's as an exercise. Let f’ denote the 
derivative of f and let a’_n and b’_n denote the Fourier coefficients of f’. Since f’ is piecewise continuous, it is bounded and 
hence square integrable. From Bessel's inequality (Section 2.5), it follows that  

∑ from n = 1 to ∞ of |a’_n| ^ 2 ≤ 1 ÷ p × ∫ from negative p to p of f’ (x) ^ 2 dx < ∞ and similarly, ∑ from n = 1 to ∞ of |b’_n| ^ 2 < 
∞. 

Let us now relate the Fourier coefficients of f to those of f’. Integrating by parts,  



we find that  

a_n = 1 ÷ p × ∫ from negative p to p of f (x) × cos n × π ÷ p × x dx = 1 ÷ n × π × f (x) sin n × π ÷ p × x from negative p to p − 1 ÷ n × π 
× ∫ from negative p to p of f’ (x) × sin n × π ÷ p × x dx 

= negative 1 ÷ n × π × ∫ from negative p to p of f’ (x) × sin n × π ÷ p × x dx = negative p ÷ n × π × b’_n, 

because sin n × π = sin (negative n × π) = 0. Similarly, integrating by parts and using the fact that f (p) = f (negative p) (remember 
f is continuous), we obtain that  

b_n = 1 ÷ π × ∫ from negative p to p of f (x) × sin n × π ÷ p × dx = 1 ÷ n × π × ∫ from negative p to p of f’ (x) × cos n × π ÷ p × x dx = p 
÷ n × π × a’_n. 

Given any two real numbers a and b, expand the right side of the inequality 0 ≤ (a − b) ^ 2 and rearrange the terms to get a × b ≤ 
1 ÷ 2 × (a ^ 2 + b ^ 2). So  

∑ from n = 1 to ∞ of |a_n| = ∑ from n = 1 to ∞ of |negative p ÷ n × π × b’_n = p ÷ π × ∑ from n = 1 to ∞ of 1 ÷ n × |b’_n| ≤ p ÷ 2 × 
π × ∑ from n = 1 to ∞ of (1 ÷ n ^ 2 + |b’_n| ^ 2) < ∞, 

because ∑ from n = 1 to ∞ of 1 ÷ n ^ 2 < ∞ and ∑ from n = 1 to ∞ of |b’_n| ^ 2 < ∞. This establishes the desired inequality and 
completes the proof.  

We end the section with two nice consequences of uniform convergence. The first one asserts that a uniformly convergent 
sequence or series can be integrated term by term. 

THEOREM 4 INTEGRATION TERM BY TERM 
Let E = [a, b], and suppose that f_n and u_k are continuous on E. 

(a) Suppose that f_n → f uniformly on E. Then 
∫ from a to b of f_n (x) dx → ∫ from a to b of f (x) dx. 

(b) Suppose that ∑ from k = 0 to ∞ of u_k converges uniformly on E to u. Then 
∫ from a to b of u (x) dx = ∑ from k = 0 to ∞ of ∫ from a to b of u_k (x) dx. 

Proof  

We prove part (a) and leave (b) as an exercise. We have to show that  

|∫ from a to b of f_n (x) dx − ∫ from a to b of f (x) dx| = |∫ from a to b of (f_n (x) – f (x)) dx| → 0 as n → ∞. 

Let M_n denote the maximum of |f_n (x) – f (x)| over the interval [a, b]. Because f_n → f uniformly on [a, b], we have M_n → 0 
as n → ∞ (Exercise 28). The desired conclusion now follows, since the right side of the last displayed equation is smaller than ∫ 
from a to b of M_n dx = (b − a) × M_n, which tends to 0 as n → ∞. 



To differentiate a. sequence or a. series of functions term by term requires more than uniform convergence, as our next 
example shows.  

EXAMPLE 3 Failure of termwise differentiation  
We saw at the outset of this section that the sequence  

f_n (x) = sin n × x ÷ n, n = 1, 2, ... 

converges uniformly to f (x) = 0 for x in [0, π]. In fact, as you can easily check, we have uniform convergence on the entire line. If 
we differentiate this sequence term by term, we get the sequence  

f’_n (x) = cos n × x, n = 1, 2, ... 

Do we have f’_n (x) → 0 (= f’ (x)) as n → ∞? The answer is no because  

lim as n → ∞ of cos n × x ≠ 0, 

as shown in Exercise 31, Section 2.3.  

Sufficient conditions for term-by-term differentiation are presented in the following theorem.  

THEOREM 5 DIFFERENTIATION TERM BY TERM 
Let E = [a, b], and suppose that f_n, f’_n, and u_k, u’_k, are continuous on E. 

(a) Suppose that (f_n) from n = 1 to ∞ and (f’_n) from n = 1 to ∞ converge uniformly on E, and let f denote the limit of (f_n) 
from n = 1 to ∞. Then f is differentiable and f’_n → f’ uniformly on E. 

(b) Suppose that both series u (x) = ∑ from k = 0 to ∞ of u_k (x) and ∑ from k = 0 to ∞ of u’_k (x) converge uniformly on E, 
then u is differentiable on E and u’ (x) = ∑ from k = 0 to ∞ of u’_k (x). 

(Thus to differentiate a series term by term, it is enough to require that both the series and the differentiated series converge 
uniformly.)  

Proof  

We prove part (b) and leave (a) as an exercise. Since the differentiated series converges uniformly and its terms are continuous, 
it follows from Theorem 2 that ∑ from k = 0 to ∞ of u’_k (x) is also continuous. Appealing to Theorem 4, we can integrate this 
series term by term and get for all t in E 

∫ from a to t of (∑ from k = 0 to ∞ of u’_k (x)) dx = ∑ from k = 0 to ∞ of ∫ from a to t of u’_k (x) dx = ∑ from k = 0 to ∞ of [u_k (t) – 
u_k (a)] = u (t) – u (a). 

Taking derivatives on both sides, it follows from the fundamental theorem of calculus that ∑ from k = 0 to ∞ of u’_k (x) = u’ (t).  

EXAMPLE 4 Differentiation term by term  
The series u(x) = ∑ from k = 1 to ∞ of sin k × x ÷ k ^ 2 converges uniformly on the whole real line by the Weierstrass M-test (with 
M_k = 1 ÷ k ^ 2). If we differentiate this series term by term, we get ∑ from k = 1 to ∞ of cos k × x ÷ k ^ 2 which is again uniformly 
convergent by the Weierstrass M-test  



(with M_k = 1 ÷ k ^ 2). We thus infer from Theorem 5 that u’ (x) = ∑ from k = 1 to ∞ of cos k × x ÷ k ^ 2. Thus the series can be 
differentiated term by term.  

In the next section we derive a powerful test for uniform convergence known as the Dirichlet test. Several examples are also 
presented, including interesting uniformly convergent series that cannot be differentiated term by term. 

Exercises 2.9  
In Exercises 1-8,  

(a) determine the limit of the 
given sequence.  

(b) Plot several graphs and 
decide whether the 
sequence converges 
uniformly on the given 
interval.  

1.  

f_n (x) = sin n × x ÷ √ n; 0 ≤ x ≤ 2 × π. 

2.  

f_n (x) = x ÷ 1 + n × x ^ 2; negative 1 ≤ 
x ≤ 1.  

3.  

f_n (x) = n ^ 2 × x ÷ 1 + n ^ 3 × x ^ 2; 
negative 1 ≤ x ≤ 1. 

4.  

f_n (x) e ^ negative n × x; 0 ≤ x ≤ 1. 

5.  

f_n (x) = n × x × e ^ negative n × x; 0 ≤ 
x ≤ 1.  

6.  

f_n (x) = e ^ negative n ^ 2 × x ^ 2 – e 
^ negative 2 × n × x; 0 ≤ x ≤ 1. 

7.  

f_n (x) = n × x ÷ n ^ 2 × x ^ 2 + 1; 0 ≤ 
x. 

8.  

f_n (x) = cos (x ÷ n); 0 ≤ x ≤ π. 

In Exercises 9-18, use the Weierstrass 
M-test to establish the uniform 
convergence of the given series, on 
the given interval.  

9.  

∑ from k = 1 to ∞ of cos k × x ÷ k ^ 2; 
all x. 

10.  

∑ from k = 1 to ∞ of (cos k × x ÷ k × 2 
+ sin k × x ÷ k ^ 3); all x. 

11.  

∑ from k = 0 to ∞ of x ^ k ÷ k!; |x| ≤ 
10. 

12.  

∑ from k = 0 to ∞ of (negative 1) ^ k × 
z ^ k ÷ k!; |z| ≤ 700. 

13.  

∑ from k = 0 to ∞ of (10 ^ x) ^ k; |x| 
≤ 1 ÷ 11. 

14.  

∑ from k = 1 to ∞ of (x ÷ 10) ^ k; |x| 
≤ 9. 

15. 

∑ from k = 0 to ∞ of x ^ k; |x| < .99. 

16.  

∑ from k = 1 to ∞ of 1 ÷ x ^ 2 + k ^ 2; 
all x. 

17.  

∑ from k = 1 to ∞ of (negative 1) ^ k ÷ 
|x| + k ^ 2; all x. 

18.  

∑ from k = 1 to ∞ of cos (x ÷ k) ÷ k ^ 
2; all x. 

19.  

Of the functions in Exercises 1-4, 
Section 2.2, which ones have a 

uniformly convergent Fourier series? 
Justify your answers without looking 
at the Fourier series.  

20.  

The Fourier coefficients of a 2 × π-
periodic function are as follows: a_0 
= 0, a_n = (negative 1) ^ n ÷ n ^ 2 and 
b_n= 1 ÷ n, for all n ≥ 1. Is the 
function continuous? Justify your 
answer. 

21.  

The Fourier coefficients of a 2 × π-
periodic function are as follows: a_0 
= 1, a_n = 1 ÷ 1 + n ^ 2 and b_n = 1 ÷ 
n ^ 3 for all n ≥ 1. Is the function 
continuous? Justify your answer.  

22.  

Give an example of a 2 × π-periodic 
function f (x) such that f (x) is not 
continuous for all x but f^2 (x) is 
continuous for all x.  

23.  

Give an example of a 2 × π-periodic 
function f (x) such that the Fourier 
series of f (x) is not uniformly 
convergent for all x but the Fourier 
series of f^2 (x) is uniformly  



convergent for all x.  

24.  

(a) Show that the series ∑ from k 
= 1 to ∞ of sin k × x ÷ k × e ^ 
negative k × x converges for 
all x ≥ 0.  

(b) Show that the series in (a) is 
differentiable for all x > 0. 
What is its derivative? [Hint: 
Pick δ such that 0 < δ < x, and 
work on the interval [δ, ∞).] 

25.  

How often can we differentiate term 
by term the series in Exercise 24 in 
the interval x > 0? Justify your 
answer.  

26.  

Consider the 2 × π-periodic function f 
defined on the interval negative π < x 
< π by f (x) = x. Without computing its 
Fourier series, say whether it 
converges uniformly on the interval 

negative π ≤ x ≤ π. Justify your 
answer.  

27.  

Let f_n (x) = sin n ^ 2 × x ÷ n, and let f 
denote the limit of the sequence as n 
→ ∞. What are f and f’? Is it true that 
f’ (x) = lim as n → ∞ of f (x)? 

28.  

Suppose that f and f_n are 
continuous functions on the closed 
and bounded interval [a, b]. Let M_n 
denote the maximum of |f – f_n| 
over [a, b]. Show that f_n → f 
uniformly on [a, b] if and only if M_n 
→ 0.  

29.  

Verify that the differential equation  

y’’ + 4 × y = ∑ from n = 1 to ∞ of 
(negative 1) ^ n + 1 ÷ n ^ 2 × sin n × π 
× t (t > 0) 

has solution  

y (t) = ∑ from n = 1 to ∞ of (negative 
1) ^ n + 1 ÷ n ^ 2 × (4 – n ^ 2 × π ^ 2) 
× sin n × π × t 

by substituting back into the 
differential equation. Justify all 
termwise differentiations.  

30. A continuous nowhere 
differentiable function.  

Show that the function  

u (x) = ∑ from k = 0 to ∞ of sin (2 ^ k 
× x) ÷ 2 ^ k 

is continuous for all x. (It can be 
shown that the function u (x) does 
not have a derivative at every x. This 
peculiar example of a continuous 
nowhere differentiable function is 
clue to Weierstrass.)  

31.  

Prove (a) of Theorem 5. [Hint: Study 
the proof of part (b).] 

2.10 Dirichlet Test and Convergence of Fourier Series  
We have discussed at length the Fourier series of the sawtooth function, ∑ from k = 1 to ∞ of sin k × x ÷ k. We have proved that 
it converges pointwise to the sawtooth function (Fourier series representation theorem, Theorem 1, Section 2.2). We have also 
proved that the series does not converge uniformly on the interval [0, 2 × π] (Example 2, Section 2.9). But what about the 
convergence over a subinterval [a, b] that does not contain the points 0 or 2 × π? Let us look at Figure 1 as we try to answer this 
question.  



Figure 1 Gibbs phenomenon and uniform convergence.  

The overshoots eventually leave the viewing window, and we have uniform convergence over the interval [a, b].  

In Figure 1, we focused our viewing window over the interval [a, b] and noticed the following interesting behavior of the Fourier 
series: The humps on the graphs of the partial sums are moving toward the endpoints of the interval [0, 2 × π]. Eventually the 
overshoots leave the window and the Gibbs phenomenon occurs outside the interval [a, b]. As a matter of fact, over the interval 
[a, b] the partial sums seem to converge uniformly.  

The latter observation is true and follows from the following important test of convergence (see also Theorem 2). The test is 
attributed to Abel and Dirichlet. In the statement of the test, we let E denote a set of real or complex numbers. Typically, the set 
E will be taken to be an interval of the real line.  

THEOREM 1 DIRICHLET TEST FOR UNIFORM CONVERGENCE 
Let E be a subset of the real (or complex) numbers, (u_k (x)) from k = 1 to ∞ be a sequence of real- or complex-valued functions 
defined on E. and (d_k) from k = 1 to ∞ be a sequence of real numbers. Then, the series 

∑ from k = 0 to ∞ of d_k × u_k (x) 

converges uniformly on E if the following two conditions are satisfied: 

(1) The coefficients d_k are positive and decreasing to zero. 
(2) There is a number M such that 

|∑ from k = 0 to ∞ of u_k (x)| ≤ M for all x in E and all n. 

The proof of the Dirichlet test is quite involved and is presented in the appendix of this section.  



There a.re two conditions in Theorem 1. The first one is usually straight-forward to verify. The second one, which states that all 
the partial sums of the u_k’s must be bounded by the same constant (or uniformly bounded) on E, is more demanding and often 
requires delicate analysis. For example, to apply the Dirichlet test with the series ∑ from k = 1 to ∞ of sin k × x ÷ k, we take d_k = 
1 ÷ k and u_k (x) = sin k × x. Condition (1) is clearly met since d_k are positive and decrease to 0. To establish condition (2) we 
need to know something about the size of ∑ from k = 1 to n of sin k × x. We encountered this sum and its cosine counterpart ∑ 
from k = 0 to n of cos k × x in Section 2.8. For any real number x ≠ 2 × m × π, we have  

(3) sin x + sin 2 × x + … + sin n × x = cos 1 ÷ 2 × x – cos (n + 1 ÷ 2) × x ÷ 2 × sin 1 ÷ 2 × x 

and  

(4) 1 ÷ 2 + cos x + cos 2 × x + … + cos n × x = sin (n + 1 ÷ 2) × x ÷ 2 × sin 1 ÷ 2 × x. 

For x = 2 × m × π, the first sum is 0 and the second sum is n + 1 ÷ 2. (For the proofs of (3) and (4), see (2) and Exercise 2 of Section 
2.8.)  

It is instructive at this point to look at the graphs of ∑ from k = 1 to n of cos k × x and ∑ from k = 1 to n of sin k × x for various 
values of n. From Figure 2 (b) we see that, on the interval 0 < x < 2 × π, sin x ÷ 2 > 0 and the graph of ∑ from k = 1 to n of sin k × x 
is squeezed between the graphs of ±1 ÷ sin k × x. Thus 

(5) |∑ from k = 1 to n of sin k × x| ≤ 1 ÷ sin x ÷ 2, 0 < x < 2 × π. 

Figure 2 Sums of cosines and sines and the envelopes ±1 ÷ sin k × x 

(a) Graphs of ∑ from k = 1 to n of cos k × x, n = 1, 3, 5.  
(b) Graphs of ∑ from k = 1 to n of sin k × x, n = 1, 10.  

This useful inequality is proved with the help of (3) as follows:  

|sin x + sin 2 × x + ... + sin n × x| = |cos 1 ÷ 2 × x − cos (n + 1 ÷ 2) × x ÷ 2 × sin x ÷ 2| 

≤ 1 + 1 ÷ |2 × sin x ÷ 2| = 1 ÷ sin x ÷ 2. 



Similarly, starting with (4), we have, for all 0 < x < 2 × π,  

(6) |∑ from k = 1 to n of cos k × x| = | sin (n + 1 ÷ 2) × x ÷ 2 × sin x ÷ 2 – 1 ÷ 2| ≤ 1 ÷ sin x ÷ 2, 

as illustrated by Figure 2 (a).  

Inequalities (5) and (6) provide what is needed to verify condition (2) in Theorem 1, when applied to trigonometric series. By a 
trigonometric series we mean any series of the form  

a_0 + ∑ from k = 1 to ∞ of (a_k × cos k × x + b_k × sin k × x) 

where a_k and b_k are arbitrary numbers. Trigonometric series include Fourier series when the a_k's and b_k 's are Fourier 
coefficients.  

THEOREM 2 TRIGONOMETRIC SERIES WITH DECREASING COEFFICIENTS  
Suppose that (a_k) from k = 1 to ∞ and (b_k) from k = 1 to ∞ are sequences of positive numbers decreasing to zero. 

(a) (Uniform convergence) Let E = [a, b] where 0 < a < b < 2 × π. Then the series ∑ from k = 1 to ∞ of a_k × cos k × x and ∑ 
from k = 1 to ∞ of b_k × sin k × x converge uniformly on E. 

(b) (Pointwise convergence) The series ∑ from k = 1 to ∞ of b_k × sin k × x converges point-wise for all x. 
(c) (Pointwise convergence) The series ∑ from k = 1 to ∞ of a_k × cos k × x converges for all x except possibly at the points x 

= 2 × n × π, n = 0, ±1, ±2, ..., where the series may converge or diverge. 

Part (a) is not true without further restrictions on (a_k) and (b_k) if we take E = [0, 2 × π]. The interval [a, b] must be strictly 
contained in (0, 2 × π). Also, notice that because of periodicity, part (a) holds if we replace (0, 2 × π) by any interval of the form 
(2 × m × π, (2 × m + 2) × π) and we take [a, b] to be any interval strictly contained in (2 × m × π, (2 × m + 2) × π).  

Proof  

(a) We prove the part with the sine series. The other part, being very similar, is left as an exercise. We want to apply the Dirichlet 
test to the series ∑ from k = 1 to ∞ of b_k × sin k × x. Since (b_k) is decreasing to zero, (1) is verified. To show that (2) holds, let 
M denote the largest of the two numbers 1 ÷ sin a ÷ 2 and 1 ÷ sin b ÷ 2 (see Figure 3). For all n, since the graph of ∑ from k = 1 to 
∞ of sin k × x is squeezed between the graphs of ±1 ÷ sin x ÷ 2 (alternatively, by (5)), we have for all a ≤ x ≤ b,  

|∑ from k = 1 to ∞ of sin k × x| ≤ 1 ÷ sin 1 ÷ 2 × x ≤ M, 

which establishes (2) and completes the proof of this part.  

Figure 3 

(b) Since the terms in the series are 2 × π-periodic, it is enough to consider x in the interval [0, 2 × π]. At x = 0 or 2 × π the series 
converges trivially, so we will suppose  



that x is in (0, 2 × π). Given such a number x, we can always find a closed interval E = [a, b] such that 0 < a< x < b < 2 × π. By (a) 
the series converges uniformly on E, and, in particular, the series converges pointwise at x. This proves (b). The proof of (c) is 
exactly the same, except that at the points x = 2 × n × π it is no longer true that the series will always converges, and so these 
points must be excluded.  

EXAMPLE 1 Uniformly convergent trigonometric series  
Straightforward applications of Theorem 2 (a) show that the series ∑ from k = 1 to ∞ of sin k × x ÷ k, ∑ from k = 1 to ∞ of sin k × x 
÷ √ k, and ∑ from k = 1 to ∞ of cos k × x ÷ k × ln (k + 1) are uniformly convergent on the interval [0.1, 6], or any other interval 
strictly contained in [0, 2 × π]. (Notice that none of these series can be handled by the Weierstrass M-test.)  

Appendix: Proof of Theorem 1  
The proof of Theorem 1 is based on the following formula which is an analog for series of integration by parts.  

ABEL 'S SUMMATION BY PARTS FORMULA  
Let (a_k) and (u_k) be two sequences of numbers, and let U_k = ∑ from j = 0 to k of u_j. Then for any integers m > n ≥ 0, we have  

∑ from k = n + 1 to m of a_k × u_k = ∑ from k = n + 1 to m of U_k × (a_k – a_k + 1) + U_m × a_m + 1 – U_n × a_n + 1. 

Proof 

We have 

a_k × u_k = (U_k – U_k – 1) × a_k = U_k × (a_k – a_k + 1) + (U_k × a_k + 1 – U_k – 1 × a_k) 

Summing from n + 1 to m we get  

∑ from k = n + 1 to m of a_k × u_k = ∑ from k = n + 1 to m of U_k × (a_k – a_k + 1) + ∑ from k = n + 1 to m of (U_k × a_k + 1 – U_k 
– 1 × a_k) 

= ∑ from k = n + 1 to m of U_k × (a_k – a_k + 1) + (U_n + 1 × a_n + 2 – U_n × a_n + 1) + (U_n + 1 × a_n + 3 – U_n + 1 × a_n + 2) + … 
+ (U_m × a_m + 1 – U_m – 1 + a_m) 

= ∑ from k = n + 1 to m of U_k × (a_k – a_k + 1) + U_m × a_m + 1 – U_n × a_n + 1. 

In the proof of the Dirichlet test, we will use the notion of Cauchy sequences. A sequence (a_n) is called a Cauchy sequence if for 
every ε > 0, there is a positive integer N such that for all m, n > N, we have |a_m – a_n| < ε. Thus a Cauchy sequence is one 
whose terms become arbitrarily close together. It is intuitively clear that a Cauchy sequence must be converging. This important 
property is known as the completeness property of the real and complex numbers. We state it here without proof.  

Completeness Property  

Suppose that (a_n) is a sequence of real or complex numbers. Then (a_n) is a convergent sequence if and only if it is a Cauchy 
sequence.  



Proof of Theorem 1  

For x in E = [a, b], let s_n (x) ∑ from k = 0 to n of a_k × u_k (x) and U_n (x) = ∑ from k = 0 to n of u_k (x). We have to show that the 
sequence (s_n) converges uniformly on E. By hypothesis, there is a number M such that |U_n (x)| ≤ M for all n and all x in E. For 
m > n, summation by parts gives  

|s_m – s_n| = |∑ from k = n + 1 to m of a_k × U_k| = |∑ from k = n + 1 to m of U_k × (a_k – a_k + 1) + U_m × a_m + 1 – U_n × a_n 
+ 1| 

We now use the triangle inequality and the bound M for U_k to obtain  

|s_m (x) – s_N (x)| ≤ M × ∑ from k = n + 1 to m of |a_k – a_k + 1| + M × |a_m + 1| + M × |a_n + 1|, 

for all x in E. Since a_k ≥ a_k + 1 ≥ … ≥ 0 for all k, we can write the terms in the sum without the absolute values. After doing so, 
and summing the telescoping series ∑ from k = n + 1 to m of (a_k – a_k + 1) we obtain  

(7) |s_m (x) – s_N (x)| ≤ M × (a_n + 1 – a_m + 1) + M × (a_m + 1 + a_n + 1) = 2 × M × a_n + 1. 

Because a_n + 1 → 0, it follows that |s_m (x) – s_n (x)| → 0 as m and n → ∞, establishing that the sequence (s_n (x)) is a Cauchy 
sequence. By the completeness property, it follows that (s_n (x)) is convergent. Let s (x) denote its limit. Letting m → ∞ in (7), 
since s_m (x) → s (x), we get  

|s (x) – s_n (x)| ≤ 2 × M × a_n + 1 

for all x in E. Now a_n + 1 → 0 by assumption, and the uniform convergence over E of s_n (x) to s (x) follows. 

Exercises 2.10  

1.  

Verify (4) and (6).  

2.  

Use (4) to prove part (c) of Theorem 2. [Hint: Modify the 
proof for the sine series.]  

In Exercises 3-8, determine the values of x for which the 
given series is convergent. Justify your answer.  

3.  

∑ from k = 1 to ∞ of cos k × x ÷ √ k. 

4.  

∑ from k = 1 to ∞ of sin 3 × k × x ÷ k ^ 2. 

5.  

∑ from k = 1 to ∞ of (sin k × x ÷ √ k + cos k × x ÷ k ^ 2). 

6.  

∑ from k = 6 to ∞ of cos k × x ÷ k – 5. 

7.  

∑ from k = 3 to ∞ of sin k × x ÷ k – 2. 

8.  

∑ from k = 1 to ∞ of cos (k + 1) × x ÷ k. 

9. Sums of sines diverge.  

(a) Show that lim as k → ∞ of sin k × x ≠ 0, for all x ≠ m 
× π. [Hint: If sin k × x → 0, then sin (k + 1) × x → 0. 
Expand sin (k + 1) × x and use Exercise 31, Section 
2.3.] 

(b) Show that the series ∑ from k = 1 to ∞ of sin k × x 
diverges for every x ≠ m × π.  



10. A uniformly convergent series that is not 
differentiable term by term. 

(a) Show that the series 
∑ from k = 1 to ∞ of cos k × x ÷ k 
is uniformly convergent on the interval [.2, 2 × π] 
but cannot be differentiated term by term on this 
interval [Hint: See Exercise 9.] 

(b) Give another example of a uniformly convergent 
series that cannot be differentiated term by term. 

11. A uniformly convergent series that is not 
absolutely convergent.  

In Example 1 we showed that the series ∑ from k = 1 to ∞ of 
sin k × x ÷ √ k is uniformly convergent on the interval [.1,6].  

(a) Show that this series does not converge absolutely 
at x = π ÷ 2. (Thus a series may converge uniformly 
but not absolutely.) 

(b) Find another value of x in [.1,6] at which the series 
does not converge absolutely. 

(c) Show that the series converges for all x. Let f (x) be 
the 2 × π-periodic function defined by the series. 
Argue that f is not square integrable. [Hint: 
Parseval's identity.] 

12.  

(a) Establish the inequality 
|1 ÷ 2 + ∑ from k = 1 to n of cos k × x| ≤ 1 ÷ |2 × sin 
1 ÷ 2 × x| (x ≠ 2 × k × π). 

(b) Illustrate the inequality by plotting the graphs of ±1 
÷ 2 × sin 1 ÷ 2 × x and 1 ÷ 2 + ∑ from k = 1 to n of cos 
k × x for n = 1, 2, ..., 20. 

(c) For which values of x do we have |1 ÷ 2 + ∑ from k = 
1 to n of cos k × x| = 1 ÷ |2 × sin 1 ÷ 2 × x|? [Hint: 
Solve |sin (n + 1 ÷ 2) × x| = 1.] 

13.  

By Theorem 2 (c), the series ∑ from k = 1 to ∞ of cos k × x ÷ 
k converges for every x ≠ 2 × m × π. Sketch several partial 
sums on the interval 0 < x < 2 × π and compare them to the 
graph of the function ln (1 ÷ 2 × sin 1 ÷ 2 × x). What do you 
conclude? 

14. The Dirichlet test for series of complex 
numbers.  

Deduce from Theorem 1 the following Dirichlet test: 
Suppose that (a_k) are positive and decreasing to zero and 
let (u_k) be a sequence of numbers (possibly complex). The 

series ∑ from k = 0 to ∞ of a_k × U_k converges if there is a 
number M such that |∑ from k = 0 to n of u_k| ≤ M for all n. 

15. Project Problem: Generalizing the 
alternating series test. 

(a) The alternating series test states: If (a_k) are 
positive and decreasing to zero then, ∑ from k = 0 to 
∞ of (negative 1) ^ k × a_k is convergent. Prove this 
test using Exercise 14. [Hint: Take u_k = (negative 1) 
^ k and M = 1.] 

(b) Prove the following version of the alternating series 
test: If (a_k) is decreasing to zero, then the series 
a_1 + a_2 – a_3 – a_4 + a_5 + a_6 – a_7 − … (two + 
signs followed by two − signs) is convergent. 

(c) Generalize the alternating series test in the same 
spirit as (b). 



Project Problem:  

Do Exercise 16 and any one of 17-18.  

16. Trigonometric series with alternating terms.  

Prove the following variant of Theorem 2.  

Suppose that (a_k) from k = 1 to ∞ and (b_k) from = 1 to ∞ 
are sequences of positive numbers decreasing to zero, and 
let E = [a, b] be any closed interval contained in (negative π, 
π). Then  

(a) (Uniform convergence) the series  
∑ from k = 1 to ∞ of (negative 1) ^ k × a_k × cos k × 
x and ∑ from k = 1 to ∞ of (negative 1) ^ k × b_k × 
sin k × x 
converge uniformly for all x in E.  

(b) (Pointwise convergence) The series  
∑ from k = 1 to ∞ of (negative 1) ^ k × b_k × sin k × x 
converges for all x.  

(c) (Pointwise convergence) The series  
∑ from k = 1 to ∞ of (negative 1) ^ k × a_k × cos k × 
x  
converges for all x except possibly at the points x = 
(2 × n + 1) × π, n = 0, ±1, ±2, ..., where the series 
may converge or diverge.  
[Hint: Use Theorem 2 and note that (negative 1) ^ k 
× sin k × x = sin k × (x + π), and (negative 1) ^ k × cos 
k × x = cos k × (x + π).]  

In Exercises 17-18, determine the values of x for which the 
given series is convergent. Justify your answer.  

17.  

∑ from k = 1 to ∞ of (negative 1) ^ k × sin k × x ÷ k. 

18. 

∑ from k = 1 to ∞ of (negative 1) ^ k × cos k × x ÷ k. 

Project Problem:  

Do Exercises 19, 20, and any one of 21-24.  

19. Trigonometric series with even indexed terms.  

Prove the following variant of Theorem 2. Suppose that 
(a_k) from k = 1 to ∞ and (b_k) from = 1 to ∞ are sequences 
of positive numbers decreasing to zero, and let E = [a, b] be 
any closed interval contained in (0, π). Then  

(a) (Uniform convergence) The series  
∑ from k = 0 to ∞ of a_k × cos 2 × k × x and ∑ from k 
= 0 to ∞ of b_k × sin 2 × k × x 
converge uniformly for all x in E.  

(b) (Pointwise convergence) The series ∑ from k = 1 to 
∞ of b_k × sin 2 × k × x converges for all x.  

(c) (Pointwise convergence) The series ∑ from k = 1 to 
∞ of a_k × cos 2 × k × x converges for all x except 
possibly at the points x = n × π, n = 0, ±1, ±2, ..., 
where the series may converge or diverge. [Hint: 
Use Theorem 2 and the change of variables 2 × x = 
u.]  



20. Trigonometric series with odd indexed terms.  

Prove the following theorem.  

Suppose that that (a_k) from k = 1 to ∞ and (b_k) from = 1 
to ∞ are sequences of positive numbers decreasing to zero, 
and let E = [a, b] be any closed interval contained in (0, π). 
Then:  

(a) (Uniform convergence) The series  
∑ from k = 0 to ∞ of a_k × cos (2 × k +1) × x and ∑ 
from k = 0 to ∞ of b_k × sin (2 × k +1) × x 
converge uniformly for all x in E.  

(b) (Pointwise convergence) The series ∑ from k = 0 to 
∞ of b_k × sin (2 × k +1) × x converges for all x.  

(c) (Pointwise convergence) The series ∑ from k = 0 to 
∞ of a_k × cos (2 × k +1) × x converges for all x 
except possibly at the points x = n × π, n = 0, ±1, ±2, 
..., where the series may converge or diverge.  

In Exercises 21-24, determine the values of x for which the 
given series is conver-gent. Justify your answer. (Hint: Refer 
to Exercises 19 and 20.)  

21.  

∑ from k = 1 to ∞ of sin 2 × k × x ÷ k. 

22. 

∑ from k = 1 to ∞ of cos (2 × k + 1) × x ÷ √ k. 

23. 

∑ from k = 1 to ∞ of sin (2 × k + 1) × x ÷ k. 

24. 

∑ from k = 2 to ∞ of cos 2 × k × x ÷ k – 1. 
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