
callas pdfChip

Table of Contents
1. Introduction ..5

1.1 pdfChip in a Nutshell ...6

1.2 What pdfChip is Not ...10

1.3 The History of pdfChip ...12

1.4 Main Features ...15

1.5 Learning pdfChip - the Tutorial ...27

1.6 pdfChip Use Cases ...30

1.7 License Levels ..34

1.8 Handling Licensing through the License Server ...37

1.9 Where to Go from Here ..38

1.10 Overview of pdfChip versions in pdfToolbox ...40

2. Reference Manual ...41

2.1 How to install and run ...42

2.2 Concepts ..49

2.3 pdfChip specific HTML aspects ...56

2.4 Using pdfChip to add barcodes and matrix codes ...69

2.5 pdfChip specific CSS aspects ..78

2.6 pdfChip specific JavaScript ...91

2.7 pdfChip specific SVG aspects ..100

2.8 Limitations and warnings ..101

2.9 pdfChip CSS Feature Compatibility ..103

3. What is new in 1.1 ...106

3.1 Support for DeviceN color spaces ...107

3.2 Passing variable information to HTML template using "--import" on the command line .109

3.3 Additional info when placing PDF pages (# of pages, page geometry)112

3.4 Creating multiple PDFs with one pdfChip command line invocation115

4. Links between HTML files are preserved when converted into a single PDF117

4.1 Links between HTML files are preserved when converted into a single PDF118

5. Barcodes and matrix codes in pdfChip ...119

5.1 List of supported barcodes and matrix codes ..120

5.2 Extended list of parameters for the barcode object ..131

5.3 How to define the size of barcode objects ..159

5.4 How to define barcode objects in HTML and SVG ..162

5.5 How to create and update barcode objects dynamically ..168

5.6 Using gradient or image as "color" for QR code ...172

5.7 Adjust page size for result PDF to size of placed PDF ...177

5.8 How to create rectangular 16x48 DataMatrix Industry code ...181

5.9 How to create ITF-14 barcode with bearer bars ...183

6. Export InDesign files into HTML/CSS templates ...185

6.1 Overview and installation ...186

6.2 How does the export filter work? ..190

6.3 Create a simple HTML template ..193

6.4 Create an HTML template that can be used for "mail merge" style multi-page PDF genera-
tion ...197

6.5 Create an HTML template for invoices ..205

6.6 Autocreate Paragraph Styles from custom styling ...211

7. Logging and debugging techniques ..212

7.1 Extended logging capabilities: "--dump-static-html" command line parameter213

7.2 Using "pdfChip Debug" browser plug-in for interactive debugging (1.2)215

8. Loading resources dynamically ...222

8.1 Dynamically update barcodes (or other HTML objects using parameters)223

8.2 Dynamically update images ..225

9. Optional content + Processing steps in pdfChip ...230

9.1 Optional content (Layers) in pdfChip ...231

10. Very large page size with UserUnits in pdfChip ..238

10.1 Very large page sizes with UserUnit ..239

11. Zoom factor in pdfChip 1.4 ..241

11.1 Use of zoom factor for increased precision ..242

12. pdfChip tips&tricks ...243

12.1 Useful code snippets for defining barcode objects, using pdfChip specific CSS, importing
PDF pages, setting page size and other things ...244

1. Introduction

1. Introduction 5

callas pdfChip

1.1 pdfChip in a Nutshell

This short chapter will get you up to speed with what
pdfChip is and it will introduce the other chapters so
that you can decide whether you want to read this in-
troduction from cover to cover or jump to specific
chapters instead.

What is it?

pdfChip is a command-line application that implements a
highly-optimised HTML + CSS + JavaScript to high-quality
PDF converter (with support for more advanced features such
as SVG, MathML, barcodes and more). Lets look at that sen-
tence in a little more detail…

HTML + CSS + JavaScript

The input of pdfChip is an HTML file. As any regular HTML file
used on the internet, it can use CSS (Cascading Style Sheets)
to apply styling and it can use JavaScript to perform all kinds
of tasks. Because pdfChip is based on the WebKit HTML ren-
dering engine, it is familiar with modern HTML syntax and is
in essence as flexible as a browser in the type of HTML it can
handle.

But pdfChip also understands extensions to the HTML and
CSS languages which allow it to support features that regular
HTML and CSS would not have an answer for; this includes
support for pagination, extended color spaces, metadata and
much more.

High-quality PDF

The output of pdfChip is a high-quality PDF document. The
high-quality aspect means that:

• the PDF code is highly efficient, so that documents with
many thousands of pages can be generated that are still

1. Introduction 1.1 pdfChip in a Nutshell 6

callas pdfChip

very compact. The conversion engine is optimised so that
it doesn't generate unnecessary content and includes ele-
ments which are used multiple times only once in the PDF
document.

• the PDF can be generated in such a way that it is immedi-
ately usable for publishing, print production, archival and
other professional uses. The ISO PDF/X and PDF/A stan-
dards are supported, custom metadata can be included,
colors can be specified correctly for a wide range of appli-
cations etc…

A Command-Line Application

pdfChip does not come with a user-interface. Instead it has to
be controlled through its command-line interface (or CLI), ei-
ther by using it in a terminal or command-prompt window, or
by integrating it through scripting or a high-level program-
ming language. With its lack of external dependencies, small
footprint and fast operation, this makes pdfChip especially
suited for integration in web-based or cloud-based applica-
tions where it can be used to turn any information into high-
quality PDF for further processing.

How does it work?

With its command-line interface, pdfChip converts an HTML
file (which may reference any number of CSS and/or
JavaScript files) into a PDF file. The simplest invocation of
pdfChip thus becomes:

pdfChip <Path to HTML file> <Path to PDF file>

Assuming in a terminal window you are in the folder where
the pdfChip application is installed and in that folder there is
also a file called 'index.html', you could convert this HTML file
into a PDF by issuing the command:

./pdfChip index.html result.pdf

The tutorial (introduced in the chapter "Learning pdfChip -
the Tutorial") contains much more elaborate examples, but
the command-line will always remain relatively simple. Of

1. Introduction 1.1 pdfChip in a Nutshell 7

callas pdfChip

course the real power (and complexity) lies within the HTML
file that is converted.

Architecture

Built on WebKit

Because pdfChip converts HTML into equivalent PDF docu-
ments, it is built on top of the WebKit rendering engine. We-
bKit is the name of the open source web browser engine,
used for example by Mac OS X and Safari. Because pdfChip is
built using the cross-platform QT framework, it uses the QT
WebKit variant to do its work.

Normally WebKit interprets HTML and provides output based
on the HTML code and any present CSS and JavaScript. In
pdfChip the first part of WebKit is used (the part that inter-
prets HTML) but the back-end is replaced by a custom PDF
generator which is highly optimised to generate the mini-
mum necessary PDF code.

Extending WebKit

Because the HTML object model is rather limited when seen
in the context of professional publishing workflows, print
production workflows, or archival workflows, the WebKit im-
plementation in pdfChip has been extended. A variety of ad-
ditional HTML elements and CSS attributes have been intro-
duced to allow generating PDF objects that cannot be de-
scribed correctly with standard HTML and CSS. The chapter
on “Main Features” describes many of these extensions in
principal; the pdfChip Reference Manual details them.

pdfChip also provides extensions around the concept of pagi-
nation; HTML (and specifically HTML5) introduce a number of
"fixed page size" features, but they are typically not very well
implemented and are incomplete. pdfChip supports a much
wider set of features through its HTML and CSS extentions
and a number of custom JavaScript objects and functions.
These too are described in somewhat more detail further in
this documentation.

1. Introduction 1.1 pdfChip in a Nutshell 8

callas pdfChip

http://webkit.org/
http://webkit.org/

Tell me more!

This pdfChip Introduction gives an overview of pdfChip on a
conceptual level, refer to the list below to understand what
each chapter explains. But there is also the pdfChip Refer-
ence Manual; this separate book contains all of the nitty grit-
ty details you need to use pdfChip in your environment.

• pdfChip in a Nutshell pdfChip in a Nutshell
The chapter you are now reading

• What pdfChip is Not What pdfChip is Not
Knowing what pdfChip is not, is just as important as
knowing what it is. This chapter explains what pdfChip
should not be used for and highlights some of the limita-
tions you may encounter.

• The History of pdfChip The History of pdfChip
The origin of pdfChip explains many of the design deci-
sions taken in the product, which in turn will let you use it
more efficiently.

• Main Features Main Features
A selection of the main features supported by pdfChip.

• Learning pdfChip - the Tutorial Learning pdfChip - the Tutorial
The hardest part of any new product is taking your first
steps... Luckily the tutorial was designed to assist you
with exactly that. This chapter introduces how you can
use the tutorial and what you'll find in it.

• pdfChip Use Cases pdfChip Use Cases
So what could pdfChip be used for? It’s far from us to limit
your creativity, but this chapter lists a number of possible
use cases for the product.

• Commercial Aspects Commercial Aspects
Because pdfChip supports a wide range of use cases, it
comes in a number of different flavors. Each has specific
restrictions and this chapter explains the available flavors
so that you can make an informed choice.

• Where to Go from Here? Where to Go from Here?
Done with this book? This chapter explains where you can
find more information and how to get help if you get
stuck either during your evaluation or after having pur-
chased pdfChip.

1. Introduction 1.1 pdfChip in a Nutshell 9

callas pdfChip

1.2 What pdfChip is Not
While the rest of this book focusses on what pdfChip is, this
chapter explains what it is not. Because there are a number
of products out there that could easily be confused with
pdfChip, it's important you realise what you should and
should not try to do with pdfChip. Of course your own cre-
ativity still rules, but keep this chapter in mind if you're look-
ing at using pdfChip in your workflow.

A Tool, not a Solution

However powerful pdfChip is, don't expect it to solve all of
your workflow issues. pdfChip is a specialized tool to convert
HTML files of any level of complexity into first-class PDF doc-
uments. It can be an awesome addition to your workflow
(see the "Use Cases" chapter for ways in which it can help)
but it will always be an addition to the workflow or the appli-
cation you are building.

Not a Report Engine

The first thing that might come to mind when thinking about
pdfChip is to use it to generate simple documents such as re-
ports or receipts. While pdfChip can definitely be used to ac-
complish this, keep in mind that it is not a report engine. If
your documents are very simple, you might not need a spe-
cialized tool such as pdfChip to create them. And it it's really
reporting you are after, keep in mind that pdfChip doesn't
have customized functionality out of the box to support that.

Of course it's possible to write an HTML file which will pro-
duce nice reports including tables, lists, graphs and every-
thing else you might want. But in the end it will probably take
a lot of time to accomplish this and the cost for pdfChip and
its implementation might become prohibitively high.

Not a Web Site Conversion Tool

Yes, pdfChip takes HTML and converts it into PDF using a We-
bKit engine. But no, that doesn't mean it will convert arbi-

1. Introduction 1.2 What pdfChip is Not 10

callas pdfChip

trary HTML or web site pages into nicely printable PDF.
pdfChip was designed to take a specially crafted HTML file
and provide a range of functionalities that a web site grabber
/ converter would not possess. If your need is to just convert
existing web pages into PDF, you'll likely find better tools out
there.

1. Introduction 1.2 What pdfChip is Not 11

callas pdfChip

1.3 The History of pdfChip
pdfChip was a long time in the making; it originated from a
range of feature requests in other callas software products
such as pdfToolbox and pdfaPilot. This chapter explains
briefly where the idea for a HTML to PDF conversion tool
comes from and where you may have seen (parts of it) be-
fore.

A customizable Preflight Report

For a very long time, the pdfToolbox and pdfaPilot products
from callas software have allowed quality control and fixing
of PDF documents for various purposes. In such a scenario
you want to be able to communicate what exactly has been
fixed or what errors and warnings have been found, so both
products have the notion of a preflight report that details all
of that information.

Preflight reports come in various flavors; some are better
suited for automated processing (such as text based or XML
based preflight reports), others are better suited for human
consumption such as HTML or PDF preflight report. About
2005, callas software came up with three different versions of
a PDF preflight report that show information either using an-
notations, transparent overlays or PDF layers.

In essence though, all three reports were static; customers
were not able to modify the information on them nor the
branding of the preflight report. Having a customisable pre-
flight report that could be adjusted to the needs of a cus-
tomer became one of the most frequent feature requests for
both pdfToolbox and pdfaPilot.

Not another report language...

The customary way to implement a custom preflight report
would be to come up with some sort of "report language" or
"report template system" in order to allow customers to
modify the look and feel of the generated reports. The prob-
lem with this of course is that it is yet another "language"
system integrators and customers must master and that such
languages are typically either very complex or very limited.

1. Introduction 1.3 The History of pdfChip 12

callas pdfChip

Rather than going down that path, it was decided to develop
an HTML template and convert that template on the fly to
good PDF. HTML is a well-known and stable standard and lots
of people know how to create HTML files. The tools for it are
ubiquitous, and the cascading style sheet (CSS) system pro-
vides ample branding capabilities. On top of that there are a
number of very fast, stable and open source HTML engines
that can be used to handle the heavy lifting around interpret-
ing the HTML and CSS. In this case WebKit was selected as
the engine.

The report engine could also take advantage of WebKit's sup-
port for Javascript and the HTML templates for the report use
Javascript to integrate with the preflight engine and insert
the actual results from the preflight into the generated PDF
file.

This new preflight report was introduced with pdfToolbox 6
and pdfaPilot 4 and proved to be very flexible, more powerful
than originally thought and very popular.

Email Archival done Right

When pdfaPilot 5 was discussed a similar problem raised its
head; the principal new feature for pdfaPilot 5 was to allow
conversion of emails into archivable PDF documents. This
posed two challenges:

• Different companies want different "views" or "represen-
tations" for their archived emails. Again this could have
been solved with a custom "template" language, but the
previously developed HTML template strategy was again
easier and more flexible.

• The more severe challenge rested with the fact that
archiving emails is not trivial. To be compliant with PDF/
A, a whole list of demands had to be placed on the gener-
ated PDF file and the HTML to PDF engine had to flexibily
support all of those. Emails also came with hyperlinks,
metadata, attachements and other more advanced fea-
tures that had not been needed to generate simple pre-
flight reports.

In the end the same HTML to PDF engine was used, but it of
course received a significant update to allow it to support
first class email to archivable PDF conversion. And that up-

1. Introduction 1.3 The History of pdfChip 13

callas pdfChip

date started the thinking that this engine had a reason to ex-
ist by itself as a separate product; the birth of pdfChip.

1. Introduction 1.3 The History of pdfChip 14

callas pdfChip

1.4 Main Features
This chapter does not go into technical details but presents
an overview of the main features in pdfChip so that you know
what is possible. Use the pdfChip Reference Manual to look
up the details about those features if they would come in
handy.

HTML, CSS and Javascript

Because pdfChip is built on top of a WebKit HTML rendering
engine, it supports almost all features of HTML and CSS and
can take full advantage of Javascript. In general pdfChip fol-
lows all HTML rules, so you can include CSS, Javascript, im-
ages etc. just as you would while designing a web site. Except
for the pdfChip specific features (customised HTML elements
and CSS properties) you can even preview your HTML file in a
browser or in an HTML design tool.

As with regular HTML for a web site, you can choose to insert
your CSS and Javascript in your main HTML file or you can
separate them in CSS and Javascript files; pdfChip will
process them correctly either way.

To define items not supported by HTML or CSS, pdfChip uses
custom HTML elements and custom CSS properties. Their
name always begins with cchip, data-cchip or -cchip and they
are normally ignored by a browser (the reason there are dif-
ferent prefixes is to keep the HTML and CSS W3C-standard
compliant). The tutorial examples provide interesting tech-
niques to use this fact so that the HTML looks one way in a
browser but another way when pdfChip converts it into PDF.

Page sizes and page boxes

While HTML normally lives in a browser, PDF is often meant
to be printed. This means that the page size is very important
and that additional page boxes may have to be defined; a
page box is a rectangle that has special meaning and is used
in a particular way by professional publishing solutions.
pdfChip supports this by using the @page CSS rule set:

1. Introduction 1.4 Main Features 15

callas pdfChip

@page {
 size: 229mm 317mm;
 margin: 20mm;
 -cchip-trimbox: 10mm 10mm 209mm 297mm;
}

This example defines an A4 sized page of 20,9cm wide by
29,7cm tall (using the cchip-trimbox property) and provides
an additional white area around that page to add informa-
tion that shouldn't be printed, such as the name of the docu-
ment, time and date, color bars or printer marks (using the
size property). Check the pdfChip Reference Manual for all
page box definitions.

Additionally the margin property is used to provide 2cm of
margin inside the page - keeping away the HTML content
from the edge of the page.

Professional color

HTML and CSS provide a number of properties to define col-
or, such as the color property to set the foreground property
and the background-color property to set the background
color. These properties either accept predefined names (such
as "white" or "yellow") or an RGB color code.

pdfChip provides additional color definitions in order to be
able to create PDF documents that will print correctly or that
comply to standards. The example below shows a back-
ground and foreground color for a paragraph element.

p {
 background-color: -cchip-cmyk(1.0,0.0,0.0,0.0);
 color: -cchip-cmyk('Spot Black', 0.0, 0.0, 0.0, 1.0, 0.5);
}

The background color is defined as CMYK using the cchip-
cmyk value; given the color values provided the background
color will be set to a pure cyan CMYK color. The foreground
color uses a modified value that causes pdfChip to generate a
spot color (or named color) called "Spot Black" and sets the
background color to 50% of that spot color.

1. Introduction 1.4 Main Features 16

callas pdfChip

Keep in mind that both color properties will be completely ig-
nored if you open the HTML in a browser, as the browser will
not understand the cchip-cmyk value. It is only because
pdfChip uses a customised processing engine that this works.

Font support

CSS already allows you to specify high-quality fonts for your
web pages. The only problem is that not all browsers support
the same types of fonts, which often leads to very convoluted
@font-face definitions. Because pdfChip is only dependent
on WebKit, an CSS file for use by pdfChip typically requires a
simple font definition, such as the following:

@font-face {
 font-family: 'FreeUniversal-Regular';
 src: url('../fonts/freeuniversal-regular.ttf');
 font-weight: normal;
 font-style: normal;
}

This specifies the location of the Free Universal font and de-
fines how it can be used in the remainder of the CSS file. The
WebKit engine supports most modern fonts (including True-
Type and OpenType) and because you only need to make
sure it works correctly in pdfChip, testing is much simpler
too.

Using PDF and SVG

Of course you can use various types of images, such as PNG
and JPEG images in your HTML. pdfChip inserts those images
in the generated PDF. If you use an image more than once, it
will only be inserted once in the resulting PDF document.

Browsers can include SVG (Scalable Vector Graphics) files just
as they can images; the following example includes an SVG
image and works correctly in all browsers andand in pdfChip.

You can also embed the SVG code immediately into your
HTML file and this too is supported by browsers and pdfChip

1. Introduction 1.4 Main Features 17

callas pdfChip

http://en.wikipedia.org/wiki/Scalable_Vector_Graphics

alike. The following example inserts a five-pointed star using
SVG.

<svg width="100mm" height="100mm">
 <polygon points="100,10 40,198 190,
 78 10,78 160,198"
 style="fill:lime;stroke:purple;
 stroke-width:5;
 fill-rule:nonzero;"/>
</svg>

It's important to note that pdfChip doesn't rasterize the SVG;
it isn't converted into an image. Instead it is inserted in the
PDF so that there is no quality loss, even if the PDF is after-
wards scaled up or printed on a high-resolution output de-
vice.

But pdfChip goes further than supporting regular images and
SVG files; it also supports the insertion of PDF documents di-
rectly. Look at the following HTML fragment:

A regular browser will not display this image, because it
doesn't support PDF documents as the source for images.
pdfChip does, and for this example will insert the second
page (page=2) of the given PDF document into the result PDF.

Again no rasterisation takes place - even better - the PDF file
is taken as is and inserted into the result PDF with as little
changes as possible. This means that pdfChip can easily be
used to accomplish impositioning for example (a process
where a large sheet is filled with pages from an input PDF so
that it can be printed and afterwards cut and folded to a
magazine or newspaper for example). But even for less ad-
vanced workflows, it means that a resolution independent
graphic (a PDF) can be used instead of a plain image.

ISO compliant PDF

Over the years the ISO (International Standards Organisa-
tion) developed a number of important standards around
PDF; the two most important once are:

1. Introduction 1.4 Main Features 18

callas pdfChip

• PDF/XPDF/X: a standard to allow optimal file exchange in graph-
ic arts workflows and,

• PDF/APDF/A: a standard to allow long-term (50 years or more)
PDF file archival.

pdfChip supports both standards through custom HTML ele-
ments. Consider the following example HTML:

<meta property="cchip-pdfx" content="PDF/X-1a">
<link rel="cchip-outputintent"
 href="./templates/outputintent.pdf"/>

The custom meta element with its name set to "cchip_pdfx"
instructs pdfChip that the PDF it outputs should have the cor-
rect PDF/X identification tags inserted. The content attibute
is set to "PDF/X-1a" which identifies the PDF/X version further
as PDF/X-1a, currently the most commonly version of that
standard.

The link element is also important here; PDF/X files need to
contain an output intent and the link element points to a PDF
document that contains the output intent we want for our re-
sulting file (a template file if you want). pdfChip will parse the
PDF file that is pointed to ("outputintent.pdf" in our exam-
ple) and copy its output intent into the PDF file is generates.

pdfChip supports more standards; you can find the full list
and instructions in the pdfChip Reference Manual. Beware of
a potential pitfall however: when pdfChip sees these instruc-
tions, it merely inserts the correct standard tags to identify
the file it generates as a standards-compliant file. It is still
your responsability to ensure that all content in the generat-
ed PDF conforms to that standard!

Inserting custom metadata

Metadata is often very important in document workflows and
PDF uses XMP (Extensible Metadata Platform) to carry meta-
data inside the PDF document. Because metadata is so im-
portant, pdfChip has a way to insert it into the resulting PDF
document.

<meta property="" content="callas documentation"
 data-cchip-xmp-ns="http://www.gwg.org/jt/xmlns/"

1. Introduction 1.4 Main Features 19

callas pdfChip

http://en.wikipedia.org/wiki/Extensible_Metadata_Platform

 data-cchip-xmp-prefix="gwg-at"
 data-cchip-xmp-property="Publication"
 data-cchip-xmp-type="Text">

This custom metaelement inserts an XMP tag called "gwg-
at:Publication" which is of type "Text" and has the value
"callas documentation". The prefix links to a namespace de-
fined as "http://www.gwg.org/jt/xmlns/".

It's important to note that some standards (such as PDF/A)
require that every piece of metadata inserted in a PDF docu-
ment is also clearly defined by a metadata definition and
pdfChip will correctly insert that information as well. The
pdfChip Reference Manual has more details on the subject.

Support for JavaScript

Perhaps the most powerful aspect of pdfChip and its WebKit
foundation is that Javascript is fully supported, and that you
can use it just as you would in a browser environment. We-
bKit really does behave like a browser in almost every aspect
and that means you can include Javascript functions to ex-
amine and change the HTML DOM (Document Object Model)
for example. This you can use Javascript to change proper-
ties of elements in your HTML file or to insert completely new
elements altogether.

You can insert script tags in your HTML file or - just as you're
used to on a web site perhaps - you can link to separate script
files. Script files you have written or that you downloaded
from the Internet. In some of the tutorial examples you'll see
JQuery used to manipulate HTML elements and insert new
elements. You'll see such advanced scripting functionality
come back again as we discuss supporting MathML in the fol-
lowing section.

In the tutorial samples JQuery was downloaded and includ-
ed in the sample's file structure. However, you can also refer
to online Javascript; just be careful if the Javascript calls you
make are asynchronuous, pdfChip provides support func-
tions to make sure this works well during conversion.

Javascript also allows implementing scenarios where a lot of
external data (data coming from a database for example)
needs to be integrated. While your Javascript functionality

1. Introduction 1.4 Main Features 20

callas pdfChip

http://jquery.com/

will not be able to extract data from the database directly,
there are way to connect to a URL and gather data (using
proxy classes written in another scripting language such as
PHP to interrogate the database and return the information
requested as XML) and there are ways to read for example
CSV files. Together with the possibilities to easily create as
many pages as you want during conversion of PDF, this is ide-
al for many variable data or transactional printing workflows.

Beautiful formulas with MathML

In some workflows it is important to be able to include nicely
formatted mathematical formulas in the generated PDF doc-
ument (think about textbooks for example). HTML has the
possibility to define formulas by using MathML. The following
is a MathML representation of probably the most famous for-
mula of all times, thanks to Albert Einstein:

<math xmlns="http://www.w3.org/1998/Math/MathML">
 <mrow>
 <mi>E</mi>
 <mo>=</mo>
 <mrow mathcolor='#cc0000'>
 <mi>m</mi>
 <mo></mo>
 <msup><mi>c</mi><mn>2</mn></msup>
 </mrow>
 </mrow>
</math>

Converting this MathML into a beautiful formula can be done
in a number of different ways; the tutorial shows how to use
the MathJax Javascript library to accomplish this.

Inserting barcodes

Barcodes have become almost omnipresent on printed mate-
rial and the variety of barcodes used is staggering. Annoying-

1. Introduction 1.4 Main Features 21

callas pdfChip

http://www.w3.org/Math/
http://www.mathjax.org/

ly barcodes are not supported in HTML; there are work-
arounds through the use of barcode fonts, but these some-
times lack quality and are limited in the types of barcode
they can represent. There is no good solution for 2D barcodes
such as QR codes just to name one.

pdfChip itself doesdoes support barcodes, through the use of the
barcode generator TBarCode from TEC-IT Datenverarbeitung
GmbH (www.tec-it.com). Just about any barcode you can
think of is supported by inserting a custom object in the
HTML file as such:

<object class="barcode" type="application/barcode"
 style="width:30mm; height:30mm;">
 <param name="type" value="QR-Code">
 <param name="data" value="http://www.callassoftware.com">
</object>

To use this functionality, you must have an object element in
your HTML file and its type must be set to "application/bar-
code". The different param nodes of this object then provide
the necessary input for the barcode generator, most impor-
tantly the type of barcode you want to insert and its value.
pdfChip would convert the above example in the following
QR-code, linking to the callas software web site:

The pdfChip Reference Manual provides full information on
all of the supported barcode types and what their parameters
should be. It is very important to stress however that pdfChip
does nono barcode validation, so the parameters you specify
should be correct and suitable for the type of barcode you
want. If not, pdfChip will return an error or create an incor-
rect barcode.

1. Introduction 1.4 Main Features 22

callas pdfChip

http://www.tec-it.com/

Generating multiple pages

How can you generate multiple 'copies' of your HTML con-
tent? If you have a business card layout in HTML, or a form
letter... how can you generate a PDF file with thousands of
pages, where each page has been tweaked (for example to
change names, or addresses or background images or...)?

pdfChip supports this through the use of a predefined
Javascript function called cchipPrintLoop(). If you define this
function in your HTML file or in one of the Javascript files in-
cluded in your HTML file, it will be called automatically by
pdfChip. In it you can setup a loop that modifies the HTML
DOM (replacing place holder elements with data you load
from a CSV file perhaps) and then calls the cchip.printPages
function. This is a member function of the cchip object and it
outputs your HTML file in the state it is at that moment and
inserts the generated PDF into the output PDF. You can call
cchip.printPages multiples times and each time the generat-
ed PDF pages will be added to your output. A simple example
could look like this:

function cchipPrintLoop() {
 for (var i=0; i < 10; i++) {
 /* Modify HTML DOM here */
 cchip.printPages();
 }
}

In this example, the HTML DOM isn't actually modified
(there's just the comment explaining where you could do
this) so the output PDF will consist of 10 identical copies, all
concatenated together into your output PDF document. The
tutorial contains a few examples of more complex setups
where you can see how this could be used to create variable
data type documents for example.

Remark that the generated PDF in this example isn't neces-
sarily 10 pages long! If you have an HTML file which converts
into a multiple page document, you'll get 10 multiple page
PDF files concatenated together. So if your HTML generates a
two-page letter, the resulting PDF if you use the above print
loop function will be 10 times 2 pages, or 20 pages.

1. Introduction 1.4 Main Features 23

callas pdfChip

Advanced pagination

Different than the previous section, advanced pagination
comes into play not if you want multiple copies of the same
document, but if you have long document which paginates
into multiple pages. Think about a book for example: very
long HTML that generates a PDF file with potentially hun-
dreds of pages.

The problem with such files is how to add features such as
running headers or page numbers, and pdfChip has special
support for such environments through something called
overlays and underlays. How does this work?

The problem with pagination

The problem with pagination is that you cannot place page
numbers in your original HTML file for example, because you
do not yet know how the content will be paginated. And it's
hard to predict (and guessing is never a good strategy) where
an advanced layout engine such as WebKit will break content
into pages.

What you need to overcome this is a sort of two-stage
process, where your HTML file would be divided into pages
and where you then get the possibility to add additional con-
tent to your document. And that is exactly what pdfChip al-
lows, it actually even has a three-stage process.

Multiple processing steps

In the first chapter of this book, the command-line for
pdfChip was introduced as:

pdfChip <Path to HTML file> <Path to PDF file>

This command-line provides the simple one-stage conversion
process that is also used in most tutorial examples. But the
command-line allows additional arguments like this:

pdfChip <Path to HTML file>

1. Introduction 1.4 Main Features 24

callas pdfChip

 --underlay=<Path to underlay HTML file>
 --overlay=<Path to overlay HTML file>
 <Path to PDF file>

We still start with the main HTML file. This is the HTML that
contains the content we want to convert into a PDF file. But
this is followed by an --underlay and/or --overlay
command (both are completely optional). If one of these ar-
guments is present, pdfChip does a second and/or third pro-
cessing step.

First the main HTML file is converted into PDF; after this the
pagination is done. The HTML has been converted using the
WebKit layout engine and it is now known how exactly the
document is going to be converted into PDF pages. The addi-
tional passes for the underlay or overlay can use this infor-
mation to their advantage. When all conversions are done,
the underlay PDF document is inserted into the output PDF
document; all of its content is inserted underneath the con-
tent that is already there (hence the name underlay). The
same happens with the PDF generated by the conversion of
the overlay HTML but this content obviously is added on top
of the output PDF.

The cchip object

During the first pass, pdfChip stores a lot of information
about the document in the cchip object and the print loop
of the underlay or overlay HTML file can use this (we already
mentioned the cchip object when introducing multi-page
PDF generation earlier. Consider this simple example of an
overlay print loop

function cchipPrintLoop() {
 for (var i=0; i < cchip.pages.length; i++) {
 $('#overlay-pagelabel p:first').text("page " + (i+1));
 cchip.printPages();
 }
}

Our overlay HTML is a very simple one-page file for this exam-
ple. The print loop queries the cchip object to figure out

1. Introduction 1.4 Main Features 25

callas pdfChip

how many pages resulted from paginating the main HTML
file. Then it generates the same amount of pages, but each
time there is a JQuery expression to change the page number
(an object in the overlay HTML identified by the ID "overlay-
pagelabel") to the correct value. The result is a paginated file
that gets the page numbers neatly added in the second pass
pdfChip makes.

Limitations

While pdfChip is very similar to a browser and while WebKit
gives it a lot of flexibility and power, there are still a few limi-
tations you should keep in mind.

Columns

The CSS properties to generate multiple columns are not
supported by pdfChip. Basically pdfChip behaves like the
printable version of such content which normally always has
one column. Specifically this means that you should not rely
on the column-count, column-gap and column-rule proper-
ties.

There is a potential work-around through the CSS regions
concept, even though this is not an integral part of the CSS
standard yet. But WebKit supports it and it is a very powerful
layout technology.

Canvas

The HTML5 canvas is an HTML element that allows drawing
graphics on the fly somewhere in an HTML page. It's a power-
ful technique but you should not, or only after lots of testing,
use it in combination with pdfChip. The reason mainly has to
do with how the canvas is converted into PDF and most of
the time that will be through rasterisation. This means you
end up with a PDF document that contains a rasterised ver-
sion of your canvas content which is typically not what you
want.

In most cases look at SVG as a more powerful technique to in-
clude arbitrary drawing in our HTML file and maintain it while
converting to PDF.

1. Introduction 1.4 Main Features 26

callas pdfChip

1.5 Learning pdfChip - the Tutorial
The hardest part of any new product is taking your first
steps... Luckily the tutorial was designed to assist you with
exactly that. This chapter introduces you to the tutorial and
what you'll find in it.

Folder structure and conventions

The tutorial consists of a number of numbered folders - when
new tutorial examples are devised, they will simply be added
to the end of the list. Each of these folders is self-contained
and is an HTML template together with all of the additional
files it needs for pdfChip to be able to convert it into a PDF
document. The naming convention has been kept as similar
as possible:

• The HTML file to convert is always called index.html. In
those few examples where there are multiple HTML files a
suffix number has been added (index2, index3...)

• If the example needs fonts, they are inside of the fonts
sub folder.

• If the example needs images, they are inside of the im-
ages sub folder.

• If the example needs scripts, they are inside of the scripts
sub folder.

• If the example needs CSS files, they are inside of the
styles sub folder.

• The templates folder contains other PDF files from which
pdfChip can copy data (see the section "ISO compliant
PDF" in the previous chapter or the tutorial example on
"Creating standards-compliant PDF" for more informa-
tion).

Each tutorial example folder also contains a read me PDF
document with more information on what the tutorial step
wants to clarify and how to use it.

Building tutorial examples

For all tutorial examples start with reading the read me PDF
file located in the tutorial example folder. If there are any
special conversion remarks for that example, they will be de-

1. Introduction 1.5 Learning pdfChip - the Tutorial 27

callas pdfChip

tailed there. Most tutorial examples though can simply be
converted using the simple pdfChip command-line syntax; if
you are using a terminal or command-prompt window and
you change directories into the directory of the tutorial ex-
ample, the command:

<Path to pdfChip>/pdfChip index.html result.pdf

will convert the HTML file into a PDF file in the same folder,
named result.pdf

The list with tutorial steps

There are tutorial examples for all main features of pdfChip.
To see what is available simply go through the sub folders of
the tutorial folder. The documentation file always indicates
what the topic for that tutorial example is.

The available steps are:

• 001 Simple HTML
• 002 Page geometry boxes
• 003 Positioning
• 004 Standards compliance
• 005 Placing PDF
• 006 Colors
• 007 Metadata
• 008 JavaScript
• 009 Fonts
• 010 Barcode
• 011 Multiple pages through JavaScript
• 012 Multiple pages with advanced pagination
• 013 SVG
• 014 MathML

The tutorial was designed to take you from the very simple to
the more complex subjects. As such it may be worthwhile to
simply go through all tutorial examples in the order they are
presented. If you are very familiar with HTML and CSS, some
of these steps may be obvious as they reiterate HTML or CSS
concepts in the light of using pdfChip.

1. Introduction 1.5 Learning pdfChip - the Tutorial 28

callas pdfChip

Download ZIP archive with pdfChip tutorial files

A ZIP archive containing all the necessary files, including read
me files providing an explanation for each step, can be down-
loaded by clicking below:

 pdfChip_Tutorial_2022-11-10.zip

1. Introduction 1.5 Learning pdfChip - the Tutorial 29

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/005/788/210/original/pdfChip_Tutorial_2022-11-10.zip

1.6 pdfChip Use Cases
There are a number of obvious use cases and workflows
where pdfChip can easily add value; this chapter lists the
most important of those. Use these as inspiration if you want
but don't let it stop your creativity to find other, novel, uses!

Variable data PDF creation and transactional
printing

In these workflows the HTML template is typically relatively
simple. The challenge is to produce a thousand, or a million
pieces that are all customised and to do so in a speedy way
while producing an optimised PDF document. pdfChip can
easily read data from XML or CSV and can repeatedly output
the same page or pages into a PDF document, where each
copy is customised. Because this customisation uses
Javascript it's fast and very flexible; it allows customisation
of text and graphics with ease.

Creating long documents is a stronghold of pdfChip, its pro-
cessing time scales up nicely with longer documents and the
PDF documents it creates are optimised as much as possible.
Images that appear multiple times for example, are included
in the generated PDF document only once which helps keep
the generated PDF file as small as possible.

Finally, in variable data and transactional workflows, the
ability to include barcodes used for marketing purposes
(such as QR codes) or administrative purposes (such as data
matrices) is of great benefit.

Online editing

More and more web sites provide the possibility to select a
template for a publication and then customise it in more or
less complex ways - ranging from adding text to changing
fonts, colors and images. The challenge is to provide an on-
line tool which lets the user make choices and then provide
an instant customised PDF of the final piece.

Because pdfChip uses HTML templates, the editing part could
be built simply using those HTML templates and pdfChip

1. Introduction 1.6 pdfChip Use Cases 30

callas pdfChip

could be used in the background to convert the template into
PDF. pdfChip is fast and uses little resources, so it could be
called while editing to provide instant feedback. When using
the PDF to give feedback to the customer, there are no
suprises at the end of the cycle (no differences between the
preview of the template and the actual printed final piece).

Imposition workflows

The fact that pdfChip is capable of 'importing' PDF files into
the final output PDF it creates, makes it ideal for workflows
where impositioning or any other composition of PDF docu-
ments needs to be done. In such workflows it is of primary
importance that the imposition or composition process
doesn't break the PDF files that are combined and pdfChip is
an excellent tool to ensure that.

On top of that the support for SVG should be taken into ac-
count here as well, SVG is ideal to add additional information
to imposed sheets, whether they are printer or registration
marks, color bars or various bits of text. Together with the
built-in support for barcodes that provides an excellent envi-
ronment to decorate the final PDF with all necessary informa-
tion.

Creating downloadable web content

In many cases web sites contain or generate information that
at some point needs to be printed or delivered in printable
format to a visitor of that site; PDF obviously is the ideal
medium for that. The fact that pdfChip consumes an HTML
template is ideal in many ways:

• Simply changing the CSS file is sometimes enough al-
ready to provide a nice, printable view on the information
on the site. pdfChip can then be used to convert that
printable view into a perfect PDF document.

• If the information comes straight out of a database, the
HTML template can use Javascript to read the correct da-
ta and modify the HTML template.

• Because pdfChip can produce standards-compliant PDF/X
or PDF/A documents, it is ideal for documents that need
to go through a publishing or archival workflow after-
wards.

1. Introduction 1.6 pdfChip Use Cases 31

callas pdfChip

• pdfChip works with HTML templates; the skills to edit
such templates are wide-spread and the templates are
easy to maintain, fit into a version control workflow and
share. pdfChip is also a self-contained solution, it does
not need other libraries or tools (such as Adobe InDesign
Server for example) to fill the templates with actual data.

The environments where this could be used are very diverse;
it could range from generating sales literature on the fly (and
customised for the web site visitor) to the generation of re-
ceipts, tickets, real estate property information, recipes...
Anything that is normally shown on the web site itself but at
times needs to be available in a printable form as well.

Magazine and Newspaper publishing

In many cases magazine and newspaper publishing work-
flows entail a fair amount of composition, ranging from
adding advertisements, to titles, page numbers or barcodes.
The same advantages for imposition workflows play here
again, PDF files (with ads for example) can be added without
any loss of quality or fear that the placed ad might be
changed and the HTML templates with its Javascript support
are extremely flexible when it comes to adding additional
content to the publications.

In some workflows (think of specialty magazines or newspa-
pers for example) the complete template could be done in
HTML; with the support for CSS regions in pdfChip that cer-
tainly becomes a possibility. In that case pdfChip provides a
lightweight and very flexible publication composition engine.

Book publishing

The challenge of book printing (and even more so for on-de-
mand book printing) is to take lots of relatively simple but
structured content, and produce a relatively long, nice-look-
ing, PDF. The advanced pagination features of pdfChip come
in to play to deal with page numbers, running headers and so
on.

Because pdfChip can convert multiple HTML files into a sin-
gle PDF file, it's ideal in environments where a book is deliv-
ered in pieces (one HTML file per chapter for example). The

1. Introduction 1.6 pdfChip Use Cases 32

callas pdfChip

Javascript support even lets the template pull the informa-
tion out of an XML file making links with a database easy.

1. Introduction 1.6 pdfChip Use Cases 33

callas pdfChip

1.7 License Levels
Because pdfChip supports a wide range of use cases, it
comes in a number of different license levels. Each has spe-
cific restrictions and this chapter explains the available li-
cense levels so that you can make an informed choice.

Server licensing and activation

pdfChip is always sold per server, whether that server is real
or virtual. The license you acquire is for a particular operating
system and can be used to activate one (1) server. Activation
requires an exchange of information with the callas activa-
tion server, which can happen over the Internet (if the server
running pdfChip has access to the Internet) or through email.

As all server-level software from callas software, pdfChip
comes with an SMA (or Software Maintenance Agreement).
The SMA is obligatory for the first year and optional after-
wards. With the SMA comes priority support, and free up-
dates and upgrades. The cost of the SMA is 20% of the prod-
uct price yearly.

pdfChip license levels

Because of the diversity of environments where pdfChip can
be used, the product is sold in a number of different license
levels. Different license levels come at a different price point,
but also carry restrictions as explained in this section.

Upgrading between license levels

We understand your needs can evolve over time, and pdfChip
can evolve with you. To upgrade from a lower to a higher li-
cense level of pdfChip, the cost is the difference in price be-
tween those two levels. If you have an active SMA, the differ-
ence in price for the SMA will be added to the upgrade price
as well.

1. Introduction 1.7 License Levels 34

callas pdfChip

Restrictions

This is the explanation of the different restrictions used to di-
versify the different pdfChip license levels:

• Parallel processes Parallel processes
Determines how many conversions from HTML to PDF can
be run in parallel. Each conversion runs on a separate
processor or processor core (in a different process); your
hardware needs to be able to support the number of par-
allel processes your license allows for optimal perfor-
mance.
If the allowed number of simultaneous pdfChip processes
is exceeded, every additional process will remain in a
"waiting" mode until another process is finnished before
the conversion starts.

• Pages per hour Pages per hour
The number of pages per hour that pdfChip can generate;
this is the number of pages in output PDF files, not the
number of HTML files converted.
If the allowed number of pages per hour is exceeded,
pdfChip will pause running and new conversions until the
time interval allows the production of pages again.

• Barcode support Barcode support
The number of barcodes supported by pdfChip; some fla-
vors support only a reduced set of barcodes.

• Number of pages per document Number of pages per document
Determines the maximum number of pages that can be
output for a single PDF by pdfChip. While this is defined
as a hard number in the overview table below, pdfChip
will actually allow some overrun (at the expense of slower
processing) to provide you with flexibility in your work-
flow.
If the allowed number of pages per document is exceed-
ed, pdfChip will continue to produce the PDF, but every
additional page over the limit will be created with an in-
creasing delay.

• Advanced pagination Advanced pagination
Whether or not pdfChip supports to multi-pass advanced
pagination features.

• Tagged PDF Tagged PDF
Whether or not pdfChip supports creation of Tagged PDF

1. Introduction 1.7 License Levels 35

callas pdfChip

(necessary for some archival workflows and for accessible
documents).

Flavor overview

The following table lists the different pdfChip flavors and the
restrictions they implement.

Feature Feature S S M M L L XL XL

Parallel processes 1 4 8 Unlimited

Number of pages per hour 1000 5000 25000 Unlimited

Barcode support
EAN, UPC, ISBN,
Code39,
Code128, QR

All All All

Number of pages per doc-
ument 25 250 1500 Unlimited

Advanced pagination No Yes Yes Yes

For more information, or exact pricing for pdfChip license lev-
els, see the next section.

Getting help on pricing

If you have questions on what license level of pdfChip would
be the best in your environment, if you want more informa-
tion on the exact restrictions in a specific license level or if
you have questions on licensing conditions of pdfChip, con-
tact callas software directly using the info@callassoft-
ware.com email address or contact Four Pees using in-
fo@fourpees.com.

Four Pees is the worldwide distributor for all callas software
products and can provide licensing information, put you in
contact with a local system integrator or reseller who can
help you in your own language or help with any integration
or training needs you encounter with pdfChip.

1. Introduction 1.7 License Levels 36

callas pdfChip

mailto:info@callassoftware.com
mailto:info@callassoftware.com
mailto:info@fourpees.com
mailto:info@fourpees.com

1.8 Handling Licensing through the
License Server
In order to avoid having to activate a callas software product,
you can use a reference to a running License Server in the call
to that product. The --licenseserver option points
the callas software product to the License Server so it can get
permission to run your call. There are two License Server-
based models:

Using the License Server

All commands related to the License Server are explained in
the License Server manual: Using the License Server.

Using the License Server on-premise

All commands related to the License Server on-premise are
explained in the License Server manual: Using the License
Server on-premise.

1. Introduction 1.8 Handling Licensing through the License Server 37

callas pdfChip

https://help.callassoftware.com/m/licenseserver/l/921369-license-server-versus-other-licensing-models#license-server-based-licensing
https://help.callassoftware.com/m/licenseserver/l/921369-license-server-versus-other-licensing-models#license-server-based-licensing
https://help.callassoftware.com/m/licenseserver/l/1601616-using-the-license-server
https://help.callassoftware.com/m/licenseserver/l/921378-using-the-license-server-on-premise
https://help.callassoftware.com/m/licenseserver/l/921378-using-the-license-server-on-premise

1.9 Where to Go from Here
You're at the end of this book, but of course there is much
more information about pdfChip. This chapter points the way
to additional help available to you.

pdfChip Reference Manual

This pdfChip Introduction book explains what is possible
with pdfChip but not how you can accomplish these things;
the pdfChip Reference Manual contains all technical details
you need to implement pdfChip in your workflow or applica-
tion.

The callas software web site

The callas software web site contains trial downloads for all
callas products, including pdfChip. The trial will allow you to
test pdfChip on your own HTML files in your own environ-
ment so that you are certain it is a good fit with what you are
looking for.

On the same web site you'll also find more documentation,
frequently asked questions and various tutorials. Of course
all commercial information about pdfChip and the other
callas products is also available.

Commercial questions

If you have questions on what flavor of pdfChip would be the
best in your environment, if you want more information on
the exact restrictions in a specific flavor or if you have ques-
tions on licensing conditions of pdfChip, contact callas soft-
ware directly using the info@callassoftware.cominfo@callassoftware.com email ad-
dress.

Technical questions

For technical questions please check the "Support" section
on the callas softwarecallas software web siteweb site. You'll find an extensive

1. Introduction 1.9 Where to Go from Here 38

callas pdfChip

http://www.callassoftware.com/
mailto:info@callassoftware.com
http://www.callassoftware.com/

knowledge base with frequently asked questions, tips &
tricks, tutorials and recordings of webinars explaining vari-
ous technical aspects of pdfChip.

If that doesn't resolve your question, or if you want to talk to
someone about your particular project or integration needs,
send an email to support@callassoftware.com. Sometimes a
short phone call or an online demo makes all the difference.

1. Introduction 1.9 Where to Go from Here 39

callas pdfChip

mailto:support@callassoftware.com

1.10 Overview of pdfChip versions in
pdfToolbox

pdfToolbox pdfToolbox pdfChip pdfChip

14.4.621 2.5.084

14.2.612 2.5.083

14.1.606 2.5.080

13.0.576 2.4.072

12.1.556 2.3.070

12.0.552 2.2.068

11.1.542 2.2.066

10.2.503 2.1.059

10.1.490 2.0.056

10.1.484 2.0.053

10.1.482 2.0.052

1. Introduction 1.10 Overview of pdfChip versions in pdfToolbox 40

callas pdfChip

2. Reference Manual

2. Reference Manual 41

callas pdfChip

2.1 How to install and run
pdfChip does not have a user-interface, but is used by a com-
mand-line interface (CLI). The application needs a valid acti-
vation to run. This activation is bound to the hardware from
which the activation was performed.

Installing pdfChip

Available platforms for pdfChip are Windows, macOS and
Linux.

You can download the latest version of pdfChip from our
website by requesting a trial here: pdfchip

You can also register on our website for easy access to all
pdfChip download links. Once registered and logged in, you
can access the list of download links here: pdfchip

The package for Linux does not use installer software, it sim-
ply has to be unpacked within the designated folder. For ex-
ample using the following command:

gtar zxvpf <callas pdfChip package>.tar.gz

Activating pdfChip

Before pdfChip can be used, the software has to be activated.

Request an activation code

Open a terminal window, change into the installation direc-
tory and type:

pdfChip --keycode <name> <company> trial [--aws]

OR

pdfChip --keycode <name> <company> <license> [--aws]

2. Reference Manual 2.1 How to install and run 42

callas pdfChip

https://www.callassoftware.com/en/products/pdfchip/pdfchip/download
https://www.callassoftware.com/en/login
https://www.callassoftware.com/en/products/pdfchip/pdfchip/download

Parameters

name name of licensee (e.g. "Registered user")

company name of company (e.g. "User's company")

license
Licence key obtained from the registration card
or the License.pdf provided by callas or the re-
seller.

trial To make a request for a trial version, please use
the keyword "trial" (for a pdfChip trial version)

aws for installation on Amazon Web Services (EC2,
using Windows or Linux 64bit)

The textual output of --keycode has to be send via e-mail to
the e-mail address named in the text in order to receive an
activation code from the registration server.

Activating pdfChip

After receiving the automatic email reply, the attached "Acti-
vation.pdf" has to be saved and pdfChip has to be activated.
To do this, open a terminal window, change into the installa-
tion directory and type the following command:

pdfChip --activate <activation file>

Parameters

activation file Full path to Activation.pdf

A activated License.txt will then be stored in the user-prefer-
ences-folder of the current user.

If no response is received or in the event of an error, please
contact support@callassoftware.com to determine the exact
cause.

2. Reference Manual 2.1 How to install and run 43

callas pdfChip

 Please note: Please note:

It is necessary to activate the received license file to
get a permanent valid license file.

The Activation.pdf (or the content of the e-mail)
can only be used for activation for 48 hours.
After this time frame, a new Activation.pdf has to be
requested from the activation server.

Deactivating pdfChip

As the activation (and the resulting license file) is bound to
the hardware, it is necessary to deactivate a license on one
machine before a activation can take place on a different ma-
chine.

Request the current activation code

Open a terminal window, change into the installation direc-
tory and type:

pdfChip --status

Deactivate using the activation code

 Copy the activation code which is listed within the output
(24 alphanumeric characters).

pdfChip --deactivate <activation code>

 Confirm the question (Do you want to proceed (y/n)?) by
typing "y". The pdfChip activation will be removed from the
system.

2. Reference Manual 2.1 How to install and run 44

callas pdfChip

Using pdfChip

The command-line interface of pdfChip converts an HTML file
into a PDF. Referenced images, CSS and JavaScripts will be
included in the created PDF.

pdfChip <Path to HTML file> <Path to PDF file>

On Mac OS X and Linux, the command in the terminal win-
dow should look like:

./pdfChip index.html result.pdf

Using Windows, the command would be:

pdfChip.exe index.html result.pdf

The names of the input HTML file and the output PDF are to-
tally free, you can use whatever works in your environment.

Return codes

All return codes below 100 indicate a successful operation, a
code starting with 100 indicates an error.

Return Return
code code Description Description

0 Successful operation

Return codes indicating an error Return codes indicating an error

Return Return
code code Description Description

20 An unknown error has occurred.

21 Unable to write pdf file, file access error.

2. Reference Manual 2.1 How to install and run 45

callas pdfChip

RReetturn curn codes indicodes indicating an errating an error or

RReetturn urn
ccode ode Description Description

22 Undefined Mediabox, minimum page size should be 3 by 3 units.

23 An error has occurred in flate encoder.

24 An error has occurred in flate decoder.

25 An error has occurred in lzw decoder.

26 An error has occurred in ASCII-85 decoder.

27 An error has occurred in ASCII-Hex decoder.

28 An error has occurred in RunLength decoder.

29 An error has occurred in prediction decoder.

30 An error has occurred in dct (jpeg-image) decoder.

31 File offset is greater than 9999999999 bytes. PDF only allows offsets up to 10 deci-
mal digits.

32 The required resource name is too large, too much resources are required.

33 A spot color space has a wrong alternate color space type.

34 A path length entry is out of range.

35 There are too many PDF files open.

36 Unable to open the PDF file for import.

37 PDF file is not supported, it might be encrypted.

38 Unable to parse pdf file, syntax error found.

39 The page could not be found.

40 A given parameter is invalid or wrong.

41 The given object number is invalid

42 A inline-image contains an ID without a BI.

2. Reference Manual 2.1 How to install and run 46

callas pdfChip

RReetturn curn codes indicodes indicating an errating an error or

RReetturn urn
ccode ode Description Description

43 A content stream contains illegal commands.

44 A resource could not be found.

45 A given resource is wrong.

46 A given function object is wrong.

47 Unable to read font resource.

48 Unable to find glyphs in current font.

49 An error has occured in XMP Metadata function.

50 Invalid context (e.g. a context is popped wich never was pushed)

51 Page without underlay or overlay reservation.

52 The keycode you have entered is invalid.

53 The keycode you have entered has expired.

54 Unable to draw barcode.

55 Unable to open icc profile from file path.

56 Unable to read all required encryption parameter.

57 The page limit is exhausted.

58 Too many parallel processes.

59 The requested barcode is not supported.

60 Unable to read all linearized hint data.

100 Failed loading HTML page.

101 Invalid command line argument.

102 Unknown HTML contents.

2. Reference Manual 2.1 How to install and run 47

callas pdfChip

RReetturn curn codes indicodes indicating an errating an error or

RReetturn urn
ccode ode Description Description

103 Remote ICC profiles are not supported.

104 WebKit error or JavaScript error.

105 DeviceN is specified incorrectly in CSS (i.e. wrong number of colors)

106 JavaScript extension 'cchip' is not supported

If you are experiencing a return code, which is not listed
above (or in the output of the call: "pdfChip --status"), please
contact us. Please provide the respective files then, they are
necessary to further analyse the issue.

2. Reference Manual 2.1 How to install and run 48

callas pdfChip

2.2 Concepts

callas pdfChip – the Foundation

For various reasons development at callas software were
looking for technology that could create PDF files on the fly
but did not require programming to express exactly what
type of PDF was to be created (there are a number of mature,
high quality libraries in the market that can already do that).
An obvious approach was to use a language that is good at
expressing two-dimensional static visual content. Inventing
our own language was not an option (there are too many al-
ready), and some of the existing languages were not to our
liking. Ultimately we found ourselves thinking about HTML 5,
including CSS 3, MathML, and SVG (and possibly also
JavaScript, and be it just to remain flexible in situations
where something was needed that wasn’t covered by HTML 5
as such). While there do exist some technologies in the mar-
ket to convert HTML to PDF, each of them had some limita-
tions we could not accept.

Because of this, development decided to create their own
HTML to PDF technology - a major, non-trivial challenge!
Some design decision helped us to not get lost in a sea of re-
quirements and usage scenarios:

• callas pdfChip only creates static two-dimensional PDF
content; while a future version of callas pdfChip might
support video or audio streams by embedding them as
video or audio annotations in PDF, callas pdfChip will
never aim to replicate interactive aspects, whether en-
countered in the form of HTML 5 features like JavaScript,
or through technologies like Flash, Silverlight on so on.

• callas pdfChip is not positioned as a technology, that out
of the box converts web pages or web sites to decent PDF
(though it might work well in numerous cases).

• for optimal use of callas pdfChip certain rules have to be
followed (which are explained in the various chapters of
this documentation).

2. Reference Manual 2.2 Concepts 49

callas pdfChip

So if it’s not for converting web sites to PDF – what is it
for?

callas pdfChip makes it possible to use HTML – and all the
powerful features that come with it – to describe a high quali-
ty PDF file. Obviously there are a couple of aspects that can’t
be done well, or not at all, in HTML when it comes to defining
what a PDF shall look like. We decided to work on these as-
pects in the following ways:

• colour: add colour related features like spot colours, and
support flexible handling of colour resources, most no-
tably ICC profiles

• advanced graphics PDF features: fully support trans-
parency, overprint, smooth shades and so forth

• support for XMP metadata
• support for ISO standards, most notably PDF/A-1, PDF/A-2

and PDF/A-3, as well as PDF/X-1a and PDF/X-4
• pagination: as CSS 3 for Paged Media never worked out, a

dual pass mode is supported allowing for limitless flexi-
bility to include content that can only be fully known
once all the page breaks have been determined

• aggregation:
• overlay PDF pages onto pages use PDF pages as back-

ground for any object
• overlay PDF pages onto pages
• import PDF pages (like images), including extensive

support for clipping
• combine several HTML files into one PDF

• barcodes: callas pdfChip supports all 1D and 2D barcodes
we are aware of (ca. 130 different symbologies)

• print loop: based on a custom JavaScript function provid-
ed by callas pdfChip, and in combination with suitable
JavaScript scripting, enables creation of any number of
PDF pages in a dynamic fashion, each with partially or
completely different content

The above implies that HTML has to be written with the in-
tended purpose of creating decent PDF from it in mind. Un-
less callas pdfChip is told in some fashion that a certain ob-
ject is to use a spot colour, and is to be set to overprint, it
won’t happen. At the same time this does not preclude to
write HTML that can also be used … for a web page. So while

2. Reference Manual 2.2 Concepts 50

callas pdfChip

callas pdfChip is not a general purpose web page to PDF con-
verter, it can be immensely powerful when it comes to deriv-
ing a high quality PDF from a web page, or from a collection
of web pages. In most cases callas pdfChip specific features
that extend HTML 5, CSS 3 or JavaScript do not cause issues
when the same HTML is served through a browser. In some
cases, for example when specifying a spot colour or import-
ing PDF pages, a fallback may have to be provided (which is a
common pratice anyway in modern web programming, e.g.
when following the principles of progressive enhancement).

Overall architecture of callas pdfChip

When developing callas pdfChip we did not start from
scratch. There are some technologies readily available that
do a great job at processing HTML 5. So we decided to pick
one, and we chose WebKit as one of the two building blocks.
WebKit is the engine on which the Apple Safari browser is
based. As WebKit is dveloped further, callas pdfChip will be
updated to inherit the WebKit enhancements.

Web browsers, and by implication WebKit, are optimised for
rendering visual content on screen. Taking screen quality vi-
sual content to create PDF would leave a lot of thing to be de-
sired if high quality PDFs are needed. Thus the part of WebKit
that prepares HTML for output on a screen was replaced by a
component developed by the callas software development
team, internally named “cchip” (shorthand for “callas convert
HTML into PDF”). cchip translates each piece of HTML con-
tent into the most suitable representation in PDF, and takes
care of all the house keeping chores when writing a PDF.

Some other areas in WebKit had to be customised as well, to
support callas pdfChip specific functionality, mostly to access
or pass through information that is needed to write high
quality PDF but might not be readily available otherwise at
the time an object is to be encoded in PDF.

Performance

WebKit is an impressive technology when it comes to perfor-
mance, and there is probably not much we could do to im-
prove its performance substantially. The PDF creating mod-
ule cchip though is fully under our own control. The following

2. Reference Manual 2.2 Concepts 51

callas pdfChip

top design goals have been and are at the core of the callas
pdfChip development:

• create the smallest possible PDF files
• support very long / big PDF files
• create PDF files that are most efficicient when processed

(for example by a PDF viewer or printer)
• do not require a lot of memory
• do not require substantially more memory for long / big

documents that for short / small documents
• do not add substantial processing time on top of the time

WebKit needs to process the HTML
• support current versions of Mac OS X, Microsoft Windows,

and Linux
• and last but not least: it is ready when it is ready

The technology behind callas pdfChip has already been put
to work before callas pdfChip was published. Since late 2013
callas pdfToolbox allows to create several types of reports
based on HTML templates. Since March 2014, callas pdfaPilot
can convert HTML based emails to PDF and PDF/A. All in all
callas pdfChip has undergone one and half year of extensive
testing before it has been shipped.

A word on…

HTML 5 comes as a pack of technologies – CSS 3, MathML,
SVG, and JavaScript. All of these are supported by WebKit
and thus by callas pdfChip. While it's easy to see in which
ways CSS 3 is relevant, it might be less obvious for the other
components.

… CSS 3

There are some very important aspects about CSS 3 that one
must understand when relying on it: CSS 3 is not one specifi-
cation; instead it is a group of related specifications. CSS 3 is
not “frozen”; instead, new modules can be added at any
time. CSS 3 is not necessarily fully supported by any existing
implementation; some modules are possibly not supported
at all (because they are still too new), others are only sup-
ported to a very limited degree (because it is either “not so
important” to developers or their market, or maybe to “cost-
ly” to implement fully. All this applies to callas pdfChip as

2. Reference Manual 2.2 Concepts 52

callas pdfChip

well. An excellent source to find out whether a given CSS 3
feature can be used in callas pdfChip – have a look at the
“Can I Use” website at http://caniuse.com/ and check the in-
formation about support of a given feature in Apple Safari.

… MathML

Anybody looking at the creation of text books or scientific
publications, will be happy to know that MathML can be used
in callas pdfChip. Some limitations do apply though:

• MathML (currently at version 3) comes in two flavors: con-
tent MathML and presentation MathML. There is hardly
any support for content MathML in today’s browsers, and
everybody – users of MathML in general as much as devel-
opers of MathML supporting technology – seem to focus
on just presentation MathML.

• Support for presentation MathML in WebKit is not perfect,
certain more complex aspects of MathML are just not
working in WebKit – unless one adds MathJAX to the
equation (pun intended): MathJAX is an open source, free
of charge JavaScript library that turbo charges WebKit (or
other browsers/web engines), and achieves almost per-
fect support for presentation MathML (and on the side al-
so allows for use of ASCIIMath, TeX, or LaTeX based repre-
sentations of mathematical expressions).

… SVG

SVG and PDF share the same imaging concepts, and most of
the SVG syntax has direct equivalents with syntax in PDF. This
is very handy when one wishes to have maximum control
over how content is encoded into a PDF page. SVG does not
paginate well – in this regard it is similar to an image.

Note: Where a single page PDF is to be created, SVG files can
also be processed directly by callas pdfChip.

… JavaScript

In its early days JavaScript inside HTML content has mostly
been used for creation of effects. Over time it became a full
fledged programming language, even supporting object ori-

2. Reference Manual 2.2 Concepts 53

callas pdfChip

ented programming. Todays rich interactive websites are not
thinkable without JavaScript. And driven by the interest in
making websites more interesting and interactive, the devel-
opers behind the JavaScript engine in WebKit have invested
a lot of effort in making it highly performant.

This can be taken advantage of in callas pdfChip. Whether in-
formation is to be retrieved from whatever web service, or
whether decision about the content to be encoded is to be
made on the basis of whatever source of data – it can be
done, and it can be done very efficiently. In addition, callas
pdfChip can be extended, by using a suitable JavaScript li-
brary. For example, the hyphenation support in WebKit is not
very good. This can be remedied by using a JavaScript library
like the Hunspell based “hyphenator.js” library. Also, in a
number of cases where WebKit does not support a recently
introduced CSS 3 feature yet, in many cases a so called “poly-
fill” is available that just fills such a gap and makes WebKit
– and thus callas pdfChip – behave as if it supported that fea-
ture.

Single pass processing

Unless advanced pagination requirements are to be ad-
dressed, the default operating mode, Single Pass, will be fully
sufficient. The underlying concept is simple: callas pdfChip
processes the incoming HTML file (which implies execution of
JavaScript used by the file obviously) and converts all visual
content, as well as applicable metadata, to PDF syntax. This
resulting PDF syntax is wrapped up in a compact PDF file.

callas pdfChip in many regards behaves like a web browser,
thus it is absolutely adequate to use URLs the same way as
they are used on HTML pages, It is not a prerequisite that all
of the referenced resources exist locally on the machine
where callas pdfChip is running. That said – as resolving links
can fail in a browser if the respective web server or web ser-
vices is not reachable or not available, so it can fail in callas
pdfChip. In addition, accessing a resource on the local ma-
chine or in the local area network tends to work faster than
doing the same over the internet.

When making use of JavaScript, it is important to understand
that in principle callas pdfChip works in synchronous mode.
Where JavaScript is used in an asynchronous fashion. Special

2. Reference Manual 2.2 Concepts 54

callas pdfChip

precautions have to be taken into account – make sure to
read and understand the section on “pdfChip specific
JavaScript aspects”.

Multiple pass processing

Everyone looking at pagination functionality in HTML 5 will
end up looking at the CSS 3 Paged Media module. Some will
already by disappointed by the limitations in the Paged Me-
dia module, like lack of internal styling inside running head-
ers or footers. Disappointment will grow substantially once
one finds out that most non-trivial features in the Paged Me-
dia module are hardly implemented in any of the leading
browsers or web engines.

We felt the same disappointment, and decided to give up on
CSS 3 Paged Media and instead choose a different, conceptu-
ally pretty simple approach: process the HTML file more than
once, remember relevant information from the first process-
ing round and make use of it in following processing rounds.
Obvious candidates for this technique are total number of
pages (adding text such as “Page 5 out of 12”), or the text of
the current (for a given page) section headings for use in run-
ning headers and footers.

callas pdfChip collects and then makes available such infor-
mation between passes. In addition, based on custom
JavaScript calls, additional information can be collected dur-
ing a pass and provided for processing by a subsequent pass.
This can become suitable for the creation of fully dynamic
table of contents (even for several HTML files converted to a
single aggregated PDF file), including correct page numbers
and links. The same applies to cross references, lists of fig-
ures or indexes.

2. Reference Manual 2.2 Concepts 55

callas pdfChip

2.3 pdfChip specific HTML aspects
In pdfChip most valid HTML tags can be used. Due to the big
amount of available tags and and an even bigger number of
possible combinations, some of them might result in an un-
expected result. Due to the different needs for formatting
content on a page with a fixed size than for a website (which
shall be properly displayed on every output device) some for-
matting tags don't make sense.

This chapter contains some details of some special HTML fea-
tures which have been added to achieve some special needs
to be able to use PDFs (and not only images) as well as
adding XMP Metadata, including PDF Standards identifier,
adding an OutputIntent or attaching (embedding) files to the
created PDF document. Please refer to the CSS chapter for
details regarding layout.

Use PDF as image format

pdfChip allows the usage of PDF pages as source for image
tags. Since PDFs can contain more than one page, a syntax
for selecting the page to be placed has been added to the
HTML syntax.

The PDF that is positioned will not become rasterized, but
rather the original PDF content is merged with the generated
PDF document.

Also Adobe Illustrator (.ai) files can be used in the same way
like PDF files. Only the PDF representation of the file will be
used then, all internal Illustrator information stored in the file
will be discarded and not be a part of the new PDF file.

URL syntax for PDF pages

The URL for PDF supports the following features:

<URL>#page=<PAGE-NUM>&box=<BOXNAME>&boxadj=<LEFT>,<TOP>,<RIGHT>,<BOTTOM>

• <URL><URL>: the url to a PDF file
• <PAGE-NUM><PAGE-NUM>: the page number (one based)

2. Reference Manual 2.3 pdfChip specific HTML aspects 56

callas pdfChip

• <BOXNAME><BOXNAME>: specify the page box used for placement:
trim, crop, media, bleed, art. Default: CropBox

• <LEFT>,<TOP>,<RIGHT>,<BOTTOM><LEFT>,<TOP>,<RIGHT>,<BOTTOM>: adjustment for the
page box. Positive values will extend the selected page
box. Default: 0
Values can be specified in 'mm', 'pt', 'cm', 'pc', 'in' units.
Default unit is 'pt.

• Note:
If the page=<PAGE-NUM> part is missing the first page
from the PDF referenced by URL is used for placement.

Example

Place the first page of "sample.pdf"

Places the second page of sample.pdf

Supported tags HTML and CSS properties

• HTML Tags:
• <imgimg src=“sample.pdf#page=2”>

• CSS properties
• background:urlbackground:url(“sample.pdf#page=2”)
• background-image:urlbackground-image:url(“sample.pdf#page=2”)

Use Adobe Illustrator files (.ai) as image format

Also Adobe Illustrator (.ai) files can be used in the same way
as PDF files. Only the PDF representation of the file will be
used in this case, all internal Illustrator information stored in
the file will be discarded and will not be included in the PDF
file generated by pdfChip.

Support for image file formats

pdfChip supports the following image file formats:

2. Reference Manual 2.3 pdfChip specific HTML aspects 57

callas pdfChip

• GIF
• PNG
• JPEG, JPG
• TIFF, TIF
• PSD

and also:

• SVG

For the image file formats, pdfChip passes the image data, in-
cluding masks, alpha channels and ICC profiles, through to
the PDF data. By doing so, the image resolution, width and
height of image, Bits per color component, color model,
transparency, and ICC profile are fully maintained.

For PSD and TIF with Photoshop information the following
information is maintained additionally:

• Clipping path (if present)
• Photoshop layers are converted to spot channels
• XMP metadata (if present)

SVG gets converted directly to PDF data structures (for details
see pdfChip specific SVG aspects).

Create File Attachment annotations

File attachments can be created by using <a> link tags with
pdfChip custom attributes.

A file attachment annotation is created if the <a> tag contains
the following attributes:

• href: must be present, content is ignored
• data-cchip-embed: Path to file to embed

Optional attributes:

• data-cchip-mimetype: MIME type of attachment (required
for PDF/A-3)

• data-cchip-desc: Desription for attachment
• data-cchip-relationship: The AFRelationShip entry

(“Source”, “Data”, “Alternative”, “Supplement”, "Unspeci-
fied"; required for PDF/A-3)

• data-cchip-bookmark: Title of optional bookmark entry
• data-cchip-bm-path: Optional path into bookmark tree

2. Reference Manual 2.3 pdfChip specific HTML aspects 58

callas pdfChip

The <a> can't be empty and must include some visual con-
tent.

Example

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8"/>
 <title>PDF with File Attachment annotation</title>
 <style>
 ...
 </style>
 </head>

 <body>
 <p>This is a PDF, which contains an embedded text file.
It is linked
with the text below:</p>
 <a
 href
 data-cchip-embed="external/Hello.txt"
 data-cchip-relationship="Supplement"
 data-cchip-desc="Embedded text file"
 data-cchip-mimetype="text/plain">
 This is the File Attachment annotation.

 </body>

</html>

Embedding files as attachments into the
generated PDF

Files can be embedded as a file attachment to the PDF by
specifying a <link> tag with rel attribute with value "cchip-
embedded-file". The href attribute of the link tag must point
to a file.

 pdfChip-annotation_attachments.zip

2. Reference Manual 2.3 pdfChip specific HTML aspects 59

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/001/787/739/original/pdfChip-annotation_attachments.zip

• rel: Value must be "cchip-embedded-file"
• href: Path to file to embed

Optional attributes:

• data-cchip-relationship: The AFRelationShip entry
(“Source”, “Data”, “Alternative”, “Supplement”, "Unspeci-
fied"; required for PDF/A-3)

• data-cchip-filename: Will be set to actual file name if not
specified, otherwise it will be used as file name for the
embedded file

• data-cchip-mimetype: MIME type of attachment (required
for PDF/A-3)

• data-cchip-desc: Desription for attachment

Example

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8"/>
 <title>PDF with embedded file</title>
 <link
 rel="cchip-embedded-file"
 href="<Path to file to embed>"
 data-cchip-relationship="<type of relationship, e.g. 'Supplement'>"
 data-cchip-desc="Some description"
 data-cchip-mimetype="<Type of embedded file, e.g. 'text/xml'>"
 data-cchip-filename="<define a custome file name, e.g. 'source.xml'>"
 />
 </head>
 <body>
 ...
 </body>
</html>

 pdfChip-file-attachments.zip

2. Reference Manual 2.3 pdfChip specific HTML aspects 60

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/001/787/044/original/pdfChip-file-attachments.zip

Add XMP Metadata

pdfChip allows the creation of XMP Metadata by using cus-
tom properties in <meta> tags inside <head>.

A <meta> tag is used for XMP metadata creation only if it con-
tains all of the following attributes:

• property
• content
• data-cchip-xmp-ns
• data-cchip-xmp-prefix
• data-cchip-xmp-property
• data-cchip-xmp-type

The 'property' attribute The 'property' attribute

The contents of this attribute is actually not used for XMP cre-
ation, but according to the HTML specification it has to be
present.

The 'content' attribute The 'content' attribute

The contents of this attribute will be used as XMP property
value.

The 'data-cchip-xmp-ns' attribute The 'data-cchip-xmp-ns' attribute

The cchip_xmp_ns attribute specifies the XMP namespace
URI for the property.

The 'data-cchip-xmp-prefix' attribute The 'data-cchip-xmp-prefix' attribute

The cchip_xmp_prefix attribute specifies the preferred prefix
for the XMP namespace URI of the property.

The 'data-cchip-xmp-property' attribute The 'data-cchip-xmp-property' attribute

The cchip_xmp_property attribute specifies the XMP proper-
ty name.

The 'data-cchip-xmp-type' attribute The 'data-cchip-xmp-type' attribute

The cchip_xmp_type attribute specifies the XMP property
value type.

Supported values (case insensitive):

• langAlt: Creates a language alternative. Currently only the
creation of the x-default entry is supported.

2. Reference Manual 2.3 pdfChip specific HTML aspects 61

callas pdfChip

• seq: Ordered list of simple types
• bag: Unordered list of simple types
• seqstruct: Ordered list of structured types
• bagstruct: Unordered list of structured types

All other types are treated as simple XMP value types (e.g.
Text, Date, …).

Arrays of simple types

The seq and bagbag property types create a new array if not al-
ready present and add the value to this array.

Arrays of structs

The seqstruct and bagstruct property types create a new ar-
ray if not already present and add the struct value to this ar-
ray. For specifying the namespace URI and prefix for the
struct additional properties must be present in the <meta>
tag:

• data-cchip-xmp-struct-ns
• data-cchip-xmp-struct-prefix

Struct members can be specified by the XMP Toolkit subpath
syntax:

"History[1]/stEvt:when"

Examples

Adding the "dc:title" property

This example adds a language alternative for the dc:title
property.

<html>
 <head>
 <meta
 property="Subject"
 content="ccmip test (Iñtërnâtiônàlizætiøn)"

2. Reference Manual 2.3 pdfChip specific HTML aspects 62

callas pdfChip

 data-cchip-xmp-ns="http://purl.org/dc/elements/1.1/"
 data-cchip-xmp-prefix="dc"
 data-cchip-xmp-property="title"
 data-cchip-xmp-type="langAlt"
 >
 </head>
</html>

Adding a "xmpMM::History" property

This example adds a sequence of struct 'ResourceEvent'

<!-- Create a xmpMM:History Sequence of struct stEvt::ResourceEvent -->
<meta property="" content="Thursday, 06 August 2015 09:45 PM"
 data-cchip-xmp-ns="http://ns.adobe.com/xap/1.0/mm/"
 data-cchip-xmp-prefix="xmpMM"
 data-cchip-xmp-property="History"
 data-cchip-xmp-type="SeqStruct"
 data-cchip-xmp-struct-name="ResourceEvent"
 data-cchip-xmp-struct-ns="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#"
 data-cchip-xmp-struct-prefix="stEvt"
>
<!-- Add an entry to the xmpMM:History sequence -->
<meta property="" content="2013-09-06T16:01:13.000Z"
 data-cchip-xmp-ns="http://ns.adobe.com/xap/1.0/mm/"
 data-cchip-xmp-prefix="xmpMM"
 data-cchip-xmp-property="History[1]/stEvt:when"
 data-cchip-xmp-type="Date"
>
<meta property="" content="email_sent"
 data-cchip-xmp-ns="http://ns.adobe.com/xap/1.0/mm/"
 data-cchip-xmp-prefix="xmpMM"
 data-cchip-xmp-property="History[1]/stEvt:action"
 data-cchip-xmp-type="Text"
>
<meta property="" content="Zeitpunkt des Versands des Originals"
 data-cchip-xmp-ns="http://ns.adobe.com/xap/1.0/mm/"
 data-cchip-xmp-prefix="xmpMM"
 data-cchip-xmp-property="History[1]/stEvt:parameters"
 data-cchip-xmp-type="Text"
>
<meta property="" content="Microsoft Office Outlook 12.0"

2. Reference Manual 2.3 pdfChip specific HTML aspects 63

callas pdfChip

 data-cchip-xmp-ns="http://ns.adobe.com/xap/1.0/mm/"
 data-cchip-xmp-prefix="xmpMM"
 data-cchip-xmp-property="History[1]/stEvt:softwareAgent"
 data-cchip-xmp-type="Text"
>

Create PDF Standards Identifier

pdfChip allows the creation of PDF documents that pretend
compliancy to several PDF standards. There is no guarantee
that the files are really compliant since no compliancy check
is performed after creation of the PDF document. A <meta>
tag is used for triggering the insertion of XMP metadata and
Document Info entries for the following PDF standards:

PDF/A

If one of the PDF/A meta tags is present an XMP PDF/A Exten-
sion Schema will be created if necessary.

• <meta property="cchip_pdfa" content="PDF/A-1a">
• <meta property="cchip-pdfa" content="PDF/A-1b">
• <meta property="cchip-pdfa" content="PDF/A-2a">
• <meta property="cchip-pdfa" content="PDF/A-2u">
• <meta property="cchip-pdfa" content="PDF/A-2b">
• <meta property="cchip-pdfa" content="PDF/A-3a">
• <meta property="cchip-pdfa" content="PDF/A-3u">
• <meta property="cchip-pdfa" content="PDF/A-3b">

PDF/X

• <meta property="cchip-pdfx" content="PDF/X-1A">
• <meta property="cchip-pdfx" content="PDF/X-3">
• <meta property="cchip-pdfx" content="PDF/X-4">

PDF/E

• <meta property="cchip-pdfe" content="PDF/E-1">

2. Reference Manual 2.3 pdfChip specific HTML aspects 64

callas pdfChip

PDF/VT

PDF/VT also sets PDF/X-4

• <meta property="cchip-pdfvt" content="PDF/VT-1">
• <meta property="cchip-pdfvt" content="PDF/VT-2">

PDF/UA

• <meta property="cchip-pdfua" content="PDF/UA-1">

Add Output Intents

Output Intents can be included by specifying an <link> tag
with rel attribute with value
"cchip-outputintent". The href attribute of the link tag must
point to a PDF file that contains at least one Output Intent.
pdfChip will parse the PDF file and extract the first Output In-
tent.

• <link rel="cchip-outputintent" href="./templates/out-
putintent.pdf"/>

It will insert one Output Intent for every standard requested
as described in "Create PDF Standards Identifier" if needed
as well. All Output Intents will point to the same ICC profile.

• <meta property="cchip-pdfx" ... > will result in /GTS_PDFX
• <meta property="cchip-pdfa" ... > will result in

/GTS_PDFA1
• <meta property="cchip-pdfe" ... > will result in /GTS_PDFE

How to handle parts in separate HTML files

In practice, different parts of a planned document may be
contained in a number of HTML files, which are using links
between each other to jump between them. As a result
pdfChip has to differ between external and internal cross ref-
erences. It has to include and to adjust the links of those doc-
uments, which shall become part of the generated document
and leave external links unchanged.

2. Reference Manual 2.3 pdfChip specific HTML aspects 65

callas pdfChip

To achieve this, all (references) HTML files, which shall be in-
cluded in the document have to be added to the CLI call:

pdfChip {path to cover/cover.html} {path to first chapter/first.html} {path to sec-
ond chapter/second.html} ...

If an HTML contains a link () and this link points
to one of the input HTML files, this link will become a link an-
notation, otherwise it will be kept as is and this will become
an URI action for an external resource. The HTML input files
can be named identically.

• If an HTML link has a href attribute and does not contain a
fragment identifier ('#'), the first page of the linked docu-
ment will be addressed

• If a HTML-link has a href attribute and does contain a
fragment identifier ('#'), the substring following the #
character will be addressed and used as the ID

Defining the transparency blend space

Setting the blend space can be critical to ensuring consistent
rendering results. The blend space for the PDF document to
be created can be defined by means of the "cchip-trans-
parency-blendspace" value assigned to the 'rel' attribute in-
side a link tag in the head section of the HTML document.
The actual blend space can be defined as follows:

• data-paramdata-param (required); can have one of the following val-
ues:

• DeviceCMYK
• DeviceRGB
• DeviceGray
• ICC

• hrefhref Either contains path to an ICC profile (only Gray, RGB
and CMYK allowed) or is an empty string; only gets used if
data-param = "ICC"

Whenever a transparency groups gets created, the following
rules apply:

• When a "cchip-transparency-blendspace" 'rel' entry in
the head exists:
•• Colorspace defined in data-param = ... (i.e. DeviceCMYK,
DeviceRGB, DeviceGray or an ICC profile) will be used.

2. Reference Manual 2.3 pdfChip specific HTML aspects 66

callas pdfChip

• If no such entry exists
•• If an OutputIntent is defined (e.g. per <meta
name="cchip_pdfx" content="PDF/X-1a">), and the color-
space defined as destination is CMYK, DeviceCMYK will be
used as transparency blendspace.
•• If the OutputIntent defines a RGB or Gray colorspace as
destination, the respective destination ICC profile will be
used.
•• If no OutputIntent is defined, the transparency blend-
space will be set to DeviceCMYK

Examples

With referenced ICC profile

<html>
 <head>
 ...
 <link
 rel="cchip-transparency-blendspace"
 data-param = "ICC"
 href="./path/to/some/icc-profile.icc"
 />
 ...
 </head>
 <body>
 ...
 </body>

Without referenced ICC profile

<html>
 <head>
 ...
 <link
 rel="cchip-transparency-blendspace"
 data-param = "DeviceCMYK"
 href=""
 />

2. Reference Manual 2.3 pdfChip specific HTML aspects 67

callas pdfChip

 ...
 </head>
 <body>
 ...
 </body>

2. Reference Manual 2.3 pdfChip specific HTML aspects 68

callas pdfChip

2.4 Using pdfChip to add barcodes
and matrix codes
Although HTML doesn't support barcode generation beyond
the usage of barcode fonts, pdfChip offers the possibility to
add barcodes directly. The barcode functionality in callas
pdfChip is based on the barcode generator TBarCode from
TEC-IT Datenverarbeitung GmbH (www.tec-it.com). For ex-
tensive information about the various types of barcodes,
please read the "Barcode Reference" (download link can be
found below).

Portions of this article and the Barcode Reference offered be-
low for download are Copyright TEC-IT Datenverarbeitung
GmbH, Steyr/Austria, www.tec-it.com.

Quick lookup of supported barcodes

Running pdfChip with the parameter ./pdfChip --list-barcodes
on the command line:

./pdfChip --list-barcodes

will output a list of all the barcodes supported by pdfChip.
When using the TYPE value to request a barcode through the
<param> entry in a barcode <object> make sure to copy
everything between the quotes, leaving space characters in-
tact.

Example output from using ./pdfChip --list-barcodes:

ID TYPE Data
 1 "Code 11" "123456"
 2 "Code 2 of 5 Standard" "123456"
 3 "Code 2 of 5 Interleaved" "123456"
 4 "Code 2 of 5 IATA" "123456"
 5 "Code 2 of 5 Matrix" "123456"
 6 "Code 2 of 5 DataLogic" "123456"

 Barcode_Reference_EN_2015-10-30-1.pdf

2. Reference Manual 2.4 Using pdfChip to add barcodes and matrix codes 69

callas pdfChip

http://www.tec-it.com/
http://www.tec-it.com/
https://media.screensteps.com/attachment_assets/assets/000/188/520/original/Barcode_Reference_EN_2015-10-30-1.pdf

 7 "Code 2 of 5 Industry" "123456"
 8 "Code 39" "ABCDEF"
 ...

How to specify barcodes

Embedding happens using an <object> tag that has to be for-
matted as follows:

<object type="application/barcode">
 <param name="type" value="➔insert name of desired barcode type">
 <param name="data" value="➔insert value to be encoded by the barcode">
</object>

No barcode validation takes place, so a wrong value (e.g. in-
correct checksum) for the data will result in an invalid bar-
code (for some barcodes the checksum will be computed au-
tomatically if left out from the provided value). Size and lay-
out of the barcode can be adjusted using the usual HTML or
CSS parameters. In addition the size and appearance of bar-
codes can also be controlled by using one or several of the
optional parameters described below.

To view the supported types of barcodes, please go to.

Meaning of values provided under "Data"

The values provided in the "Data" column roughly indicate
what kind of data can be represented by the respective bar-
code type. For full details please see the Barcode Reference in
the Annex of the Reference Manual.

• ABCabc: lower and uppercase characters and digits; may
also support punctuation characters or even arbitray bi-
nary data

• ABCDEF: uppercase characters and digits; may also sup-
port some punctuation characters

• 123456: digits only; various rules about maximum num-
ber of digits and constraints on some of digits may apply

2. Reference Manual 2.4 Using pdfChip to add barcodes and matrix codes 70

callas pdfChip

Optional parameters

pdfChip supports various additional optional parameters
that provide more fine grained control over the size, appear-
ance and other aspects of 1D and 2D codes. Not all parame-
ter are meaningful for all types of 1D and 2D codes – for full
details see the Barcode Reference in the Annex of this Refer-
ence Manual.

An example for using optional parameters for the generation
of an "EAN 13" code is shown below:

<object type="application/barcode">
 <param name="data" value="123456789012">
 <param name="type" value="EAN 13">
 <param name="modulewidth" value="0.33mm">
 <param name="barwidthreduction" value="10%">
 <param name="textplacement" value="none">
</object>

String formatting

Provides control over how strings are formatted. For more
details see section 4.6 Format4.6 Format in the Barcode ReferenceBarcode Reference.

Usage:

<param name="format" value="A##B###C&">

Module width

Provides control over the Module width. For more details see
section 4.2 Module Width4.2 Module Width in the Barcode ReferenceBarcode Reference.

Usage:

<param name="modulewidth" value="0.33mm">
<!-- **-1**, units: mm, ", mils, **pixel**-->

2. Reference Manual 2.4 Using pdfChip to add barcodes and matrix codes 71

callas pdfChip

Horizontal resolution

Providing the horizontal resolution triggers an optimisation
of the module width for best possible consistency of bars and
gaps in the barcode and thus the barcode readability. For
more details see section 4.2 Module Width4.2 Module Width in the Barcode Barcode
ReferenceReference.

Usage:

<param name="hres" value="600">
<!-- **-1**-->

Vertical resolution

Providing the vertical resolution triggers an optimisation of
the module width for best possible consistency of bars and
gaps in the barcode and thus the barcode readability. For
more details see section 4.2 Module Width4.2 Module Width in the Barcode Barcode
ReferenceReference.

Usage:

<param name="vres" value="600">
<!-- **-1**-->

Text placement

Provides control over the positioning of the human readable
text relative to the barcode proper. Applies only to 1D codes.

Usage:

<param name="textplacement" value="none"><!-- above, **below**, none-->

Text distance

Provides control over the distance of the human readable
text from the barcode proper. Applies only to 1D codes.

2. Reference Manual 2.4 Using pdfChip to add barcodes and matrix codes 72

callas pdfChip

Usage:

<param name="textdistance" value="0.5mm"><!-- **-1**, units: mm, ", mils, **pix-
el**-->

Bearer bars

Provides control over the presence and position of bearer
bars. For more details see section 3.3 Barcode Glossary, Bear3.3 Barcode Glossary, Bear--
er Barser Bars, 6.1.43 ITF-146.1.43 ITF-14 and 6.1.66 UPC SCS6.1.66 UPC SCS (Shipping Container
Symbols)in the Barcode ReferenceBarcode Reference.

Usage:

<param name="bearerbars" value="topbottom"><!-- **none**, top, bottom, topbottom-->

Bearer width

Provides control over the width of bearer bars. For more de-
tails see section 3.3 Barcode Glossary, Bearer Bars3.3 Barcode Glossary, Bearer Bars, 6.1.43 6.1.43
ITF-14ITF-14 and 6.1.66 UPC SCS6.1.66 UPC SCS (Shipping Container Symbols) in
the Barcode ReferenceBarcode Reference.

Usage:

<param name="bearerwidth" value="0.5mm"><!-- **-1**, units: mm, ", mils, **pixel**-
->

Notch height

Provides control over the notch height. For certain types of
barcodes like e.g. "EAN 13", some of the bars are typically
longer than the rest of the bars. This parameter provides con-
trol over by how much they will be longer.

Usage:

<param name="notchheight" value="0.5mm"><!-- **-1**, units: mm, ", mils, **pixel**-
->

2. Reference Manual 2.4 Using pdfChip to add barcodes and matrix codes 73

callas pdfChip

Bar width reduction (BWR)

Provides control over the bar width reduction. For more de-
tails see section 4.3 Bar Width Reduction4.3 Bar Width Reduction (Pixel Shaving) in
the Barcode ReferenceBarcode Reference.

Usage:

<param name="barwidthreduction" value="1%"><!-- **0**, units: %, mm, ", mils,
pixel-->

Quiet zone left

Provides control over the quiet zone on the left. For more de-
tails see section 4.4 Quiet Zone4.4 Quiet Zone in the Barcode ReferenceBarcode Reference.

Usage:

<param name="quietzoneleft" value="0.5"><!-- **0**-->

Quiet zone right

Provides control over the quiet zone on the right. For more
details see section 4.4 Quiet Zone4.4 Quiet Zone in the Barcode ReferenceBarcode Reference.

Usage:

<param name="quietzoneright" value="0.5"><!-- **0**-->

Quiet zone top

Provides control over the quiet zone at the top. For more de-
tails see section 4.4 Quiet Zone4.4 Quiet Zone in the Barcode ReferenceBarcode Reference.

Usage:

<param name="quietzonetop" value="0.5"><!-- **0**-->

2. Reference Manual 2.4 Using pdfChip to add barcodes and matrix codes 74

callas pdfChip

Quiet zone bottom

Provides control over the quiet zone at the bottom. For more
details see section 4.4 Quiet Zone4.4 Quiet Zone in the Barcode ReferenceBarcode Reference.

Usage:

<param name="quietzonebottom" value="0.5"><!-- **0**-->

Quiet zone unit

Provides control over the unit used for controlling the quiet
zone. For more details see section 4.4 Quiet Zone4.4 Quiet Zone in the BarBar--
code Referencecode Reference.

Usage:

<param name="quietzoneunit" value="X"><!-- **X**, mm, ", mils, pixel. X: multiples
of module width-->

Escaping

For some types of 1D and 2D codes it is possible to encode bi-
nary data. Where such binary data includes non-printable
characters, such characters need to be provided in an es-
caped fashion. Several escaping mechanisms can be used.
For example, "\h0A" represents the hexadecimal value of
"0x0A". Es the escaping mechanisms make use of the back-
slash character, any occurrence of the actual backslash char-
acter must be written as a double backslash ("\\") to avoid
unwanted un-escaping.

Escape
sequence Description Valid for Barcode Symbology

\a Bell (alert) All

\b Backspace All

\f Form feed All

2. Reference Manual 2.4 Using pdfChip to add barcodes and matrix codes 75

callas pdfChip

\n New Line All

\r Carriage Return All

\t Horizontal Tab All

\v Vertical Tab All

\\ The backslash \ itself All

\0 Zero Byte (if subsequent char is non-nu-
meric); Available in TBarCode V10+ All

\0ooo
ASCII-character in octal notation: ooo …
up to 3 octal digits (0..7); First digit is al-
ways zero.

All

\ddd
ASCII-character in decimal notation: ddd
… up to decimal digits (0..9); First digit
must not be zero.

All

\xhh
For encoding bytes or ASCII-characters in
hexadecimal notation; hh … hexadecimal
digits (0..F)

All

\Crrggbb Color selection See Pharmacode

\Ce Reset the color to default See Pharmacode

\F FNC1 (Function Number Character 1)
used as field separator

GS-128, Codablock-F – MicroPDF417: a
special FNC1 codeword is inserted when
using emulation mode for GS1-128 or
Code-128 – Data Matrix: a special FNC1
codeword is inserted

\F Inserts a Gs (Group Separator) or ASCII
1DHex. Don’t encode the \x1d directly!

PDF417, MaxiCode and in QR-Code – QR-
Code: When using format UCC/EAN/GS1
Gs is inserted in Byte Mode, a % is insert-
ed in alphanumeric mode.

\Ennnnnn

Extended Channel Interpretation (ECI).
nnnnnn … 6 digit ECI number with lead-
ing zeros. Used for defining the character
set (code page) for subsequent encoded
data – see C.1 ECI

MaxiCode, Data Matrix, QR-Code, PDF417,
MicroPDF417, Aztec Code

\EB, \EE Special ECI identifiers for nesting ECIs.
\EB (ECI Begin) opens a nesting level, \EE QR-Code

2. Reference Manual 2.4 Using pdfChip to add barcodes and matrix codes 76

callas pdfChip

(ECI End) closes it.

\G Global Language Identifier (GLI), similar
to ECI (see \E). PDF417

\S Symbol separator character for C128 emulation

\ Function sequence. Currently FNC1, FNC2, FNC3, FNC4 are implemented. \ is equal to
\F.

\210 FNC1 Code128, GS1-128, Codablock-F

\211 FNC2 Code128, GS1-128, Codablock-F

\212 FNC3 Code128, GS1-128, Codablock-F

\213 FNC4 Code128, GS1-128, Codablock-F

\x11 DC1 Code93, Code93Ext

\x12 DC2 Code93, Code93Ext

\x13 DC3 Code93, Code93Ext

\x14 DC4 Code93, Code93Ext

\x1e Rs (Record Separator), ASCII 1EHex PDF417, QR-Code, Data Matrix, MaxiCode
(Mode 3,4 SCM)

\x1d Gs (Group Separator), ASCII 1DHex PDF417, QR-Code, Data Matrix, MaxiCode
(Mode 3,4 SCM)

\x04 Eot (End of Transmission), ASCII 04Hex PDF417, QR-Code, Data Matrix, MaxiCode
(Mode 3,4 SCM)

2. Reference Manual 2.4 Using pdfChip to add barcodes and matrix codes 77

callas pdfChip

2.5 pdfChip specific CSS aspects
In pdfChip, (almost) all valid CSS3 properties can be used. On
top of that, pdfChip implements a range of additional CSS
properties, mainly in order to address certain requirements
of the graphic arts industry. This chapter describes these cus-
tom CSS properties as well as other properties that are useful
in the context of pdfChip.

Page geometry boxes

PDF page geometry boxes can be specified inside the CSS
@page{} rule. The following custom CSS properties are avail-
able:

-cchip-trimbox
-cchip-bleedbox
-cchip-cropbox
-cchip-artbox

Page geometry boxes are defined in PDF coordinates: 0/0 is
left bottom of the page and Y goes up (rather than in screen
coordinates where center is left top and Y goes down). Each
of the page geometry box properties takes four values: The
fist two define the coordinates of the lower left corner, the
third the width and the forth the height of the box. The MediMedi--
aBoxaBox is defined via the CSS @page size property.

Example for a typical A4 page:

@page {
 size: 230mm 317mm;
 -cchip-trimbox: 10mm 10mm 210mm 297mm;
 -cchip-bleedbox: 7mm 7mm 216mm 303mm;
 -cchip-cropbox: 0mm 0mm 230mm 317mm;
 }

If a pdfChip-page geometry box property is set, then:

• the appropriate page geometry box is present in the out-
put PDF

• the appropriate value is available is JavaScript 'page' ob-
ject

2. Reference Manual 2.5 pdfChip specific CSS aspects 78

callas pdfChip

In order to use page geometry boxes in JavaScript the syntax
is

• cchip.pages[i].artbox
• cchip.pages[i].bleedbox
• cchip.pages[i].trimbox
• cchip.pages[i].cropbox

E.g. in order to check if the BleedBox is set on the first page:

if (cchip.pages[1].bleedbox) {
 ...do something with bleedbox...
 }

Force Mediabox and CropBox to be equal and sit at the
origin (0,0)

 New in pdfChip v.2.2.064

Due to various constraints and limitations, it is often neces-
sary to make the pagesize larger than actually needed and at
the same time use a CropBox to crop it to the actually intend-
ed displayed/rendered size. This leads to PDFs where the
page as displayed/rendered does not sit at the origin but
rather away from it (i.e. where the lower left of the CropBox
sits).

Some PDF processing/output tools fail to acknowldge the po-
sition of the CropBox and instead just look at the MediaBox.
It is not feasible to make all those tools behave per the PDF
specification, instead the new CSS property below will help
by creating PDFs where the CropBox sits at the origin 0/0. The
MediaBox would have the same value as that of the CropBox
while the other boxes that are present (BleedBox, TrimBox,
ArtBox) would also be adjusted accordingly (by the same
delta as the CropBox).

-cchip-media-and-crop-box-at-origin: on | off (on is default value)

Needless to say that when the switch is turned OFF, the Medi-
aBox and the CropBox might not sit at the origin 0/0 on creat-
ing a PDF file.

2. Reference Manual 2.5 pdfChip specific CSS aspects 79

callas pdfChip

Before making adjustments (intended page size: 500x1000):
 /CropBox [50 100 550 1100]
 /MediaBox [0 0 550 1100]
 /BleedBoox [... original ...]
 /TrimBox [... original ...]
 /ArtBox [... original ...]

After making adjustments (intended page size: 500x1000):
 /CropBox [0 0 500 1000]
 /MediaBox [0 0 500 1000]
 /BleedBoox [... adjusted ...]
 /TrimBox [... adjusted ...]
 /ArtBox [... adjusted ...]

Please keep in mind that this works even if the page size or
CropBox are different from page to page.

Rotating page content

In pdfChip, you can use all CSS positioning properties. This
includes properties for rotating page content which are not
supported by all web browsers and are therefore not com-
monly used. For this reason they are listed here.

• -webkit-transform: Sets the rotation factor
• -webkit-transform-origin: Defines the origin for rotation

It is useful to combine these properties with other position-
ing properties in order to set the origin accordingly.

Example for rotating content 45 degrees counterclockwise
with an origin at 20mm / 100 mm (from top of the page).

.rotated-45 {
 position: absolute;
 left: 20mm; bottom: 100mm;
 -webkit-transform: rotate(-45deg);
 -webkit-transform-origin: left bottom;
 }

2. Reference Manual 2.5 pdfChip specific CSS aspects 80

callas pdfChip

 Since HTML thinks in 96 dpi, some transformations
in HTML cause displacement of content for which
users can:

• The Origin in HTML is always at the top left, the Ori-
gin for CropBox etc. is at the bottom left (in terms of
page size)

• Always make the pagesize/MediaBox a little bit big-
ger than the page should be at the end, especially in
the vertical direction (at least a few mm, rather
more), but also in the horizontal direction (here a few
points would be enough, but in case of doubt just
add 10mm)

• Set the actual page size via the CropBox
• The CropBox should be in the upper left corner and

TrimBox equal to the CropBox
• Example for a desired page format of DIN A4

(210x297mm):
• @page {

/*
Size
of
the
page,
equiv-
a-
lent
to
Me-
dia-
Box,
ori-
gin
al-
ways
at 0/
0 */

/*
10mm
wider
and
100m

2. Reference Manual 2.5 pdfChip specific CSS aspects 81

callas pdfChip

high-
er
than
ac-
tual-
ly
need-
ed
*/

size:
220mm
397mm;

/*
push
the
crop-
box
up
100mm
from
be-
low,
so
that
it
clos-
es at
the
top
*/

-chip-
crop-
box:
0mm
100mm
210mm
297mm;

/*
trim-

2. Reference Manual 2.5 pdfChip specific CSS aspects 82

callas pdfChip

box
equal
to
the
crop-
box,
or at
least
with-
in
the
crop-
box
*/

-chip-
trim
box:
0mm
100mm
210mm
297mm;

}

Page breaks

Another type of CSS property that is especially useful in
pdfChip is related to setting or avoiding page breaks, be-
cause page breaks naturally play a much more important role
in PDF creation than in the design of web pages.

• page-break-after
• page-break-before
• page-break-inside

Below, the most important values for each of these proper-
ties are listed

Value Value Result Result Applicable in Applicable in

2. Reference Manual 2.5 pdfChip specific CSS aspects 83

callas pdfChip

name name

auto Default. Automatic page breaks
page-break-after,
page-break-before,
page-break-inside

always Always insert a page break page-break-after,
page-break-before

avoid Avoid page break (if possible)
page-break-after,
page-break-before,
page-break-inside

left Insert page breaks so that the next page is
formatted as a left page

page-break-after,
page-break-before

right Insert page breaks so that the next page is
formatted as a right page

page-break-after,
page-break-before

The example below inserts a page break before the next ele-
ment.

<p style="page-break-after: always" />

 Theoretically, a 'page break' should work as sug-
gested above and simply create another PDF page
when deployed. However, this CSS does not always
work reliably in the web engines we tested and also
not in the webkit we use. In the HTML world (unlike
with PDF), page breaks are not the core of the re-
quirements.

To avoid this, the template can be adjusted or the
vertical distance between the source pages can be
increased, so that the content is mounted on the
next page.

2. Reference Manual 2.5 pdfChip specific CSS aspects 84

callas pdfChip

Defining colors for print - CMYK, spot or ICC
based color

Device color spaces

CSS Property CSS Property Value Range Value Range Resulting Color Space Resulting Color Space

-cchip-gray(g) g: 0.0 … 1.0 DeviceGray

-cchip-rgb(r,g,b) rgb: 0.0 … 1.0 DeviceRGB

-cchip-cmyk(c,m,y,k) cmyk: 0.0 … 1.0 DeviceCMYK

Device independent color spaces (ICC based and Lab)

CSS Property CSS Property Value Range Value Range Resulting Color Space Resulting Color Space

-cchip-icc-gray('ICCPATH', g) g: 0.0 … 1.0 ICC based Gray

-cchip-icc-rgb('ICCPATH',
r,g,b) rgb: 0.0 ... 1.0 ICC based RGB

-cchip-icc-cmyk('ICCPATH',
c,m,y,k) cmyk: 0.0 … 1.0 ICC based CMYK

-cchip-lab(l,a,b) l: 0.0 … 100.0
ab: -128.0 … +127.0 Lab

-cchip-icc-lab('ICCPATH',
l,a,b)

"l: 0.0 … 100.0
ab: -128.0 … +127.0" ICC based Lab

With 'ICCPATH' path to a local ICC profile.

2. Reference Manual 2.5 pdfChip specific CSS aspects 85

callas pdfChip

Spot color (with Alternate color defintions using
device dependent or device independent color spaces)

CSS Property CSS Property Value Range Value Range Resulting Color Space Resulting Color Space

-cchip-gray('NAME',g [, tint]) g: 0.0 … 1.0, tint 0 …
1.0

Spot color NAME, Alternate De-
viceGray

-cchip-icc-gray('ICCPATH', 'NAME',g
[, tint])

g: 0.0 … 1.0, tint 0 …
1.0

Spot color NAME, Alternate ICC
based Gray

-cchip-rgb('NAME',r,g,b [, tint]) rgb: 0.0 … 1.0, tint 0 …
1.0

Spot color NAME, Alternate De-
viceRGB

-cchip-icc-rgb('ICCPATH',
'NAME',r,g,b [, tint])

rgb: 0.0 … 1.0, tint 0 …
1.0

Spot color NAME, Alternate ICC
based RGB

-cchip-cmyk('NAME',c,m,y,k [, tint]) cmyk: 0.0 … 1.0, tint 0
… 1.0

Spot color NAME, Alternate De-
viceCMYK

-cchip-icc-cmyk('ICCPATH',
'NAME',c,m,y,k [, tint])

cmyk: 0.0 … 1.0, tint 0
… 1.0

Spot color NAME, Alternate ICC
based CMYK

-cchip-lab('NAME',l,a,b [, tint])
l: 0.0 … 100.0
ab: -128.0 … +127.0,
tint 0 … 1.0

Spot color NAME, Alternate Lab

-cchip-icc-lab('ICCPATH',
'NAME',l,a,b [, tint])

l: 0.0 … 100.0
ab: -128.0 … +127.0,
tint 0 … 1.0

Spot color NAME, Alternate ICC
based Lab

With 'ICCPATH' path to a local ICC profile. Profiles have to be
accessible in the file system, it is e.g. not possible to derive
them via http.

In order to define colors in a way that a regular Browser will
be able to display a color the definitions can be combined
with regular HTML/CSS color definitions as shown below.

Example that defines a background color as spot color with
the name "Spot" using an alternate color in ICC based CMYK
C=0% M=80% Y=80% K=0% and ISO Coated v2 as source color
space. The spot color is used with a tint value of 75%.

2. Reference Manual 2.5 pdfChip specific CSS aspects 86

callas pdfChip

.background-spot_orange-ICCbasedcmyk {
 background-color: orange;
 background-color: -cchip-icc-cmyk('./ISO Coated v2 (ECI).icc',
 'Orange',0.0,0.8,0.8,0.0, 0.75)
 }

DeviceN color spaces

Defining DeviceN color spaces is a bit more complex than us-
ing other color spaces, which comes from the fact that Devi-
ceN in principle is a (multi-component) color space conceptu-
ally defined in two steps:

• First, one or several separation color space have to be es-
tablished: often spot color colorants, but also process col-
or colorants (one or even several None components could
be possible).

• Second, these separation color space are defined in a cer-
tain order and form within the DeviceN color space

• In addition, the DeviceN color space itself also needs an
alternate colorspace definition

@-cchip-devicen{
-cchip-devicen-name: "test-colorspace-name";
-cchip-components: -cchip-cmyk('Cyan' ,1 ,0 ,0 ,0)
 -cchip-cmyk('Magenta',0 ,1 ,0 ,0)
 -cchip-cmyk('Yellow' ,0 ,0 ,1 ,0)
 -cchip-cmyk('Black' ,0 ,0 ,0 ,1)
 -cchip-cmyk('Fifth colorant' ,0.5 ,0.5 ,0.5 ,0)
 -cchip-cmyk('Sixth colorant' ,0 ,0.5 ,0.5 ,0.2)
}

The alternates of the components can become defined in all
supported spot color definitions (see chapter above).

A mixture of different alternate color spaces may become
converted to CMYK-only alternate values.

Using and mixing different channels is similar to the usage of
common color spaces, for example:

.devicen.c1 { background-color: -cchip-devicen('test-colorspace-
name',1,0,0,0,0,0); }

2. Reference Manual 2.5 pdfChip specific CSS aspects 87

callas pdfChip

 .devicen.c2 { background-color: -cchip-devicen('test-colorspace-
name',0,1,0,0,0,0); }
 .devicen.c3 { background-color: -cchip-devicen('test-colorspace-name',0,0,0,0.
25,1,0); }

Limitations

• pdfChip colors are implemented only for CSS/HTML but
not for JavaScript. The following JavaScript is not possinot possi--
bleble for pdfChip colors:

• note.style.color = "rgb(155, 102, 102)"
• In some situations colors are converted to Device RGB:

•• Rasterization.
•• Colors are acсessed via JavaScript. E.g. if “my-
div.style.backgroundColor” in JavaScript it would be out-
put as RGB even if it has accurately been defined as CMYK
via '-cchip-cmyk' in CSS.
•• DeviceN is not supported inside rasterized content.

Extended Graphics State parameters

Special pdfChip parameters

CSS Property CSS Property Value Range Value Range Default value Default value

-cchip-flatness-tolerance >= 0.0 1.0

-cchip-smoothness-tolerance 0.0 … 1.0 -1.0 *)

-cchip-text-knockout 0, 1 0

-cchip-overprint 0, 1 0

-cchip-overprint-mode 0, 1 0

-cchip-stroke-adjustment 0, 1 0

-cchip-rendering-intent
absolute-colori-
metric, relative-
colorimetric, per-

relative-colorimet-
ric

2. Reference Manual 2.5 pdfChip specific CSS aspects 88

callas pdfChip

CCSSS PrS Property operty VValue Ralue Rangange e DefDefault vault value alue

ceptual, satura-
tion

-cchip-black-point-compensation On, Off, Default Default

*) Special value -1.0 for pdfChip-smoothness-tolerance
means “nothing was set in CSS and pdfChip should use it's
own default"

Example that switches overprint and overprint mode ON and
sets the rendering intent to "saturation" for a color.

.background-spot_orange-ICCbasedcmyk {
 -cchip-overprint: 1;
 -cchip-overprint-mode: 1;
 -cchip-rendering-intent: absolute-colorimetric;
 background-color: orange;
 background-color: -cchip-icc-cmyk('./ISO Coated v2 (ECI).icc',
 'Orange',0.0,0.8,0.8,0.0, 0.75);
}

Transparency

The CSS3 property "opacity" can be used in order to define
transparent PDF objects.

CSS Property CSS Property Value Range Value Range Default value Default value

opacity 0.0 ... 1.0 1.0

E.g. style="opacity: 0.5" sets opacity to 50%, the ca value in
the result PDF's Extended Graphic State is thereby set to 0.5.

2. Reference Manual 2.5 pdfChip specific CSS aspects 89

callas pdfChip

PDF as image in background

A PDF might be used as the background "image" inside of the
background property in the same way as in HTML in the img
tag. The PDF objects of the background "image" will show up
in the destination PDF as page objects (not rasterized).

Please go to the chapter "pdfChip specific HTML aspects" for
further information about selecting a PDF page or clipping a
PDF page.

Setting the text rendering mode

The PDF specification allows several "Rendering mode" for
text objects. Depending on the defined mode, some text
might be invisible (but can be searched and copied, e.g. in
scanned and OCR-ed documents), be painted with a stroke,
used as a clipping path and much more.

This feature is available since callas pdfChip 2.1.061

-cchip-text-rendering-mode: 0;

0 Fill text (Default)

1 Stroke text

2 Fill, then stroke text

3 Neither fill nor stroke text

4 Fill text and add to path for clipping

5 Stroke text and add to path for clipping

6 Fill, then stroke text and add to path for clip-
ping

7 Add text to path for clipping

2. Reference Manual 2.5 pdfChip specific CSS aspects 90

callas pdfChip

2.6 pdfChip specific JavaScript
In its early days JavaScript inside HTML content has mostly
been used for creation of effects. Over time it became a full
fledged programming language, even supporting object ori-
ented programming. Todays rich interactive websites are not
thinkable without JavaScript. And driven by the interest in
making websites more interesting and interactive, the devel-
opers behind the JavaScript engine in WebKit have invested
a lot of effort to make it very performant.

This can be taken advantage of in callas pdfChip. Whether in-
formation is to be retrieved from whatever web service, or
whether decision about the content to be encoded is to be
made on the basis of whatever source of data – it can be
done, and it can be done very efficiently. This chapter con-
tains full information on the specific JavaScript functionality
added by pdfChip and how you can take advantage of it.

"Normal" HTML JavaScript

Because pdfChip is based on the WebKit engine (currently we
are using ECMA Script version 5), it fully supports - even ad-
vanced - JavaScript. Anything that works in a normal browser
will also work during a conversion with pdfChip. Of course
there are features that are offered by the browser itself (such
as the "Window" object) that won't work in pdfChip because
there is no such object during the conversion pdfChip does.

The following are a few popular JavaScript libraries that have
been tested using pdfKit. This doesn't mean that you are lim-
ited to those; it simply shows off some of the possibilities
available to you.

• jQuery:jQuery: a small, lightweight and versatile JavaScript li-
brary that is mainly interesting in a pdfChip context for its
HTML dom traversal and manipulation API.

• MathJax:MathJax: a very complete and easy to use JavaScript li-
brary to render formulas in MathML.

• Hypenathor:Hypenathor: a hyphenation library that can supplement
the lack of (good) hyphenation in standard CSS.

• Polyfill libraries:Polyfill libraries: are JavaScript libraries used to imple-
ment specific CSS features not or not very well imple-
mented by browsers. Many such polyfill libraries exist to

2. Reference Manual 2.6 pdfChip specific JavaScript 91

callas pdfChip

plug holes that exist in WebKit for specific advanced CSS
features.

Modifying the print loop

The purpose of pdfChip is to convert HTML into good PDF; of-
ten use cases will need to modify the given HTML template
and alter the appearance of a single page or multiple pages
throughout the generated PDF document. To support this
pdfChip implements a number of custom Javascript func-
tions and objects that are introduced in this section. Full in-
formation about the functions and objects used is available
in the following sections.

Use in one-pass conversions

pdfChip defines a printLoop and printPages function to let
you take full control over how and when pages are output.
This lets you modify (for example) a single-page HTML tem-
plate and output as many pages as you want:

function cchipPrintLoop() {

 for (var theIndex = 0; theIndex < 10; theIndex++) {

 $('#test').text('penguins');
 cchip.printPages();
 }
 }

As soon as you include a JavaScript file into your HTML tem-
plate that defines the above printLoop function, pdfChip will
automatically execute it for you. This simple example func-
tion interates 10 times; each time it modifies a paragraph us-
ing a jQuery statement and then uses cchip.printPages to
convert the HTML template as it is at that point in time to
PDF pages.

When using cchipPrintLoop in this fashion, you still only end
up with one output PDF file, even if you call printPages multi-
ple times. pdfChip always appends the output from print-
Pages to the same (single) output PDF file.

2. Reference Manual 2.6 pdfChip specific JavaScript 92

callas pdfChip

Use in multiple-pass conversions

When using overlays or underlays, the same technique is still
usable. Of course uderlays and overlays have a different
HTML template and thus will also use different JavaScript
files, which allows giving an overlay or underlay an adjusted
print loop:

function cchipPrintLoop() {

 for (var theIndex = 0; theIndex < cchip.pages.length; theIndex++) {

 $('#test').text('penguins');
 cchip.printPages();
 }
 }

The above example for an under- or overlay is virtually identi-
cal to the one-pass example with one important change. The
number of iterations is now determined by
cchip.pages.length. This cchip object is added by pdfChip to
give you access to information from the main HTML tem-
plate. In this example it's used to generate an under- or over-
lay with the same number of pages as what was generated by
the conversion of the original HTML template.

Reference

This section contains reference information for all pdfChip
specific JavaScript functions and objects.

cchipPrintLoop

function cchipPrintLoop()

If the HTML document contains a printLoop function (either
embedded in the HTML file or in a separately included
JavaScript file), this modifies how pdfChip generates its out-
put PDF file. No PDF creation is done automatically, instead

2. Reference Manual 2.6 pdfChip specific JavaScript 93

callas pdfChip

pdfChip relies on the printPages function to be used to out-
put any PDF pages as necessary.

This means that the body of the printLoop function should be
used to alter the HTML template as necessary and that the
modified HTML DOM should be output by invoking the print-
Pages function. Note that printPages can be invoked multiple
times and if so that the result of these multiple invokations
will be merged into one output PDF file.

Example:

function cchipPrintLoop() {

 for (var theIndex = 0; theIndex < 10; theIndex++) {

 $('#test').text('penguins');
 cchip.printPages();
 }
 }

 'cchipPrintLoop' is not guaranteed to wait for re-
sources added dynamically by Javascript code.

This can be handled:

• automatically using 'cchip.onPrintReady' method,
• manually using 'cchip.beginPrinting' and

'cchip.endPrinting' methods.

cchip

During conversion of the main HTML file the cchip object is
extended by properties that hold information about the con-
verted document. This information can be used from within
the HTML template for an overlay or underlay.

cchip.printPages

function cchip.printPages()

2. Reference Manual 2.6 pdfChip specific JavaScript 94

callas pdfChip

Outputs the current HTML DOM to the PDF output file. Can be
invoked multiple times, but can only be invoked from the
body of the printLoop function.

Example:

function cchipPrintLoop() {

 cchip.printPages();

 }

If used with no parameters the current HTML DOM will be
output. The number of pages can be limited by specifying the
required number as parameter to the cchipPrintLoop. In this
case only one page will be output:

function cchipPrintLoop() {

 cchip.printPages(1);
 }

cchip.beginPrinting(), cchip.endPrinting()

If 'cchip.beginPrinting' is called, conversion is not finished
until matching 'cchip.endPrinting' is called.

If 'cchip.beginPrinting' is called multiple times then
'cchip.endPrinting' should be called multiple times as well.

If 'cchip.beginPrinting' or 'cchip.onPrintReady' is not called
conversion is finished just after 'cchipPrintLoop()' method is
executed.

Please note that these methods should be used if printing
should happen after some specific JS event. Example: If
MathJax is used, printing should happen only after MathJax
finished all its work. This can be done in the following way:

function doPrinting() {
 cchip.printPages();
 cchip.endPrinting();
}
function cchipPrintLoop() {

2. Reference Manual 2.6 pdfChip specific JavaScript 95

callas pdfChip

 cchip.beginPrinting();
 MathJax.Hub.Queue(doPrinting);
}

Without 'begin/endPrinting()" calls pdfChip will exit before
'doPrinting' method executed and no output PDF will be cre-
ated.

cchip.onPrintReady(callback)

cchip.onPrintReady(f) installs a callback function f() that is
called when the DOM is ready for printing, e.g. all images are
loaded. The normal way to use this function is to first manip-
ulate the DOM, then call cchip.onPrintReady(f) that calls f()
when the DOM is ready and exit the cchipPrintLoop(). The
function f() must call cchip.printPages() in order to actually
create PDF pages from the DOM and initiate further DOM ma-
nipulations and printing if required.

The following example illustrates how this function can be
used.

<html>
<head>
<script>
function cchipPrintLoop(){
var img = document.getElementById("myimg");
img.src = "files/image.jpg";
cchip.onPrintReady(cchip.printPages);
}
</script>
</head>
<body>

</body>
</html>

The cchipPrintLoop() function is used to place an image (im-
age. jpg) into the DOM. Instead of directly calling cchip.print-
Pages it calls the cchip.onPrintReady function that installs
cchip.printPages as a callback function which makes sure
that it will only be used after all images have been loaded.

2. Reference Manual 2.6 pdfChip specific JavaScript 96

callas pdfChip

cchip.dumpStaticHtml()

cchip.dumpStaticHtml() function writes current HTML DOM
state to HTML file.
HTML <script> tags are removed during write process. Exam-
ple, for input "in.html" and output "out.pdf" the following
code:

function cchipPrintLoop()
{
 cchip.dumpStaticHtml();
 cchip.printPages();
}

will produce dump HTML file on the path "dump-static-
html-2020-05-15--19-24-15/in-000-out-000-js-000.html"

cchip.log

function cchip.log(inTextToLog)

This function logs any string pass to it to stderr during con-
version of the HTML template.

Example:

function cchipPrintLoop() {

 cchip.log("Printing first page of DOM);
 cchip.printPages(1);

 }

cchip.urls

An array containing the URLs of all HTML files being convert-
ed. Overlays and underlays are not included here. If pdfChip
is called with a single HTML file, this list will contain only one
element; if pdfChip receives multiple HTML files on its com-

2. Reference Manual 2.6 pdfChip specific JavaScript 97

callas pdfChip

mand-line, all of the main HTML files will be available in this
list.

cchip.overlays

An array containing the URLs for all overlay HTML files used
during the conversion.

cchip.underlays

An array containing the URLs for all underlay HTML files used
during the conversion.

cchip.versionString

Version of the pdfChip executable, e.g. "2.2.066". For 64bit
application " (x64)" string appended to version, e.g. "2.2.066
(x64)".

cchip.pages

An array containing information about the individual pages
resulting from the conversion of the main HTML template in-
to a PDF document. The different properties of the page ele-
ments in this array contain information about the pages.
Specifically the following properties can be used:

• number number
The (zero-based) page number of the page.

• mediabox mediabox
Information on the mediabox for the page using a height,
width, bottom and left property. All properties are ex-
pressed in points.

• cropbox cropbox
Information on the cropbox for the page using a bottom,
left, top and right property. All properties are expressed in
points.

• trimbox trimbox
Information on the trimbox for the page using a bottom,
left, top and right property. All properties are expressed in
points.

2. Reference Manual 2.6 pdfChip specific JavaScript 98

callas pdfChip

• bleedbox bleedbox
Information on the bleedbox for the page using a bottom,
left, top and right property. All properties are expressed in
points.

• margins margins
Information on the margins for the page using a bottom,
left, top and right property. All properties are expressed in
points.

• h h
An array with information for the content (text) of the cur-
rently active headers for this page. Because the array is
zero based, cchip.pages[theIndex].h[0] returns the con-
tent of the current h1 header level.

Example:

for (var i=0; i < cchip.pages.length; ++i) {
 var page = cchip.pages[i];
 if (page.cropbox)
 cchip.log("cropbox: " + page.cropbox.left + ' ' + page.cropbox.bottom + ' '
+ page.cropbox.width + ' ' + page.cropbox.height)
}

2. Reference Manual 2.6 pdfChip specific JavaScript 99

callas pdfChip

2.7 pdfChip specific SVG aspects
In pdfChip SVG objects are supported in the same way as
they work in Webkit as well.

For using pdfChip specific colors, "fill" and "stroke" SVG at-
tributes as well via corresponding "fill" and "stroke" CSS
properties can be used.

Example

pdfChip adds some custom fuctionality to the HTML syntax
like placing PDFs in image tags or adding XML Metadata to
the resulting PDF.

<div>
 <svg height=100 width=100>
 <ellipse cx="35" cy="25" rx="27" ry="20"
 fill="-cchip-cmyk('yellow',0,0,1,0,0.9)"
 stroke="-cchip-cmyk(1,0,0,0)">
 </svg>
</div>

2. Reference Manual 2.7 pdfChip specific SVG aspects 100

callas pdfChip

2.8 Limitations and warnings

In CSS 3 but not (well) supported in pdfChip

While in pdfChip almost all valid CSS3 properties can be
used, it does not make sense for some of them. It is obvious
that this applies to all dynamic page content like animations.

CSS 3 properties for dynamic page content will have
not effect in pdfChip

• Transitions
• Animations
• User-Interface properties
• Aural Style Sheets (text to speech, sound synthesis)

Columns

The CSS 3 properties for columns: column-count, column-gap
and column-rule are currenty not supported.

The much more powerfull CSS Regions module should be
used instead. The CSS Regions module allows content from
one or more elements to flow through one or more boxes.

The CSS 3 Paged Media Module

The Paged Media Module is currently not supported by
pdfChip (except for defining page sizes usign the “@page
Rule”), nor would that be the case for most of the current
browser versions.

The Paged Media Module specifies how pages are generated.
It has functionality for page size, margins, orientation, head-
ers and footers, enables page numbering and running head-
ers or footers.

Although the Paged Media Module is not supported it is pos-
sible with pdfChip to achieve whatever (in theory) would be
possible with this module:

2. Reference Manual 2.8 Limitations and warnings 101

callas pdfChip

http://www.w3.org/TR/css3-page/#at-page-rule
http://www.w3.org/TR/css3-page/#at-page-rule

• To define page sizes use the @page rule (the only Paged
Media Module feature supported in pdfChip).

• Advanced functionality for adding page numbers, running
headers and footers the pdfChip overlays should be used,
possibly in combination with the pdfChip Dual Pass oper-
ating mode.

• It is even possible to define page paramters that are spe-
cific to the print process (page geometry boxes) using
special pdfChip custom CSS properties.

In MathML 3 but not (well) supported in pdfChip

callas pdfChip is based on WebKit, and WebKit’s support for
MathML 3 is seriously limited. Unless extra steps are taken,
callas pdfChip will not do a good job when converting non-
trivial MathML to PDF.

To overcome this limitation, use MathJax, a JavaScript library
that extends WebKit (as much as most other web engines
and browsers) such that presentation MathML is supported
almost completely (see “Supported MathML commands” for
information about the limitations of MathJax when process-
ing MathML).

Please also keep in mind, that support for “Content MathML”
is in essence seriously limited (or “experimental”). While Con-
tent MathML is semantically richer than presentation it – go-
ing back to its nature – provides much less control over how
a formula is presented than Presentation MathML. Thus it
comes at no surprise that whenever specifics of how a formu-
la is presented are important, anybody is turning to Presen-
tation MathML anyway, so lack of support for Content
MathML usually is not an issue for when creating PDF from
HTML 5 and MathML 3.

2. Reference Manual 2.8 Limitations and warnings 102

callas pdfChip

http://www.w3.org/Math/
http://docs.mathjax.org/en/latest/misc/browser-compatibility.html
http://docs.mathjax.org/en/latest/misc/browser-compatibility.html
http://docs.mathjax.org/en/latest/mathml.html#supported-mathml-commands

2.9 pdfChip CSS Feature Compatibili-
ty
Valid for pdfChip version 2.5.080 and higher Valid for pdfChip version 2.5.080 and higher

2. Reference Manual 2.9 pdfChip CSS Feature Compatibility 103

callas pdfChip

Webkit Version: 602.1.20
Safari version history

Feature Feature Status Status

Display: Inline-Block Supported

Display: Table Supported

Display: None Supported

Position: Relative Supported

Position: Absolute Supported

Position: Fixed Supported

Position: Sticky Not Supported

Flexbox Supported

Flex Direction Supported

Flex Wrap Supported

Justify Content Supported

Align Items Supported

Align Content Supported

Flex Grow Supported

Flex Shrink Supported

Flex Basis Supported

Order Supported

CSS Grid Not Supported

Grid Template Columns Not Supported

Grid Template Rows Not Supported

2. Reference Manual 2.9 pdfChip CSS Feature Compatibility 104

callas pdfChip

https://en.wikipedia.org/w/index.php?title=Safari_version_history&direction=next&oldid=1186257892

2. Reference Manual 2.9 pdfChip CSS Feature Compatibility 105

callas pdfChip

3. What is new in 1.1

3. What is new in 1.1 106

callas pdfChip

3.1 Support for DeviceN color spaces

pdfChip CSS rule "-cchip-devicen"

The new pdfChip CSS rule "-cchip-devicen-cchip-devicen" makes it possible
to define DeviceN color spaces.

The "-cchip-devicen-cchip-devicen" rule consists of two main parts:

• define the name by which the DeviceN colorspace is
known inside the CSS styles:
-cchip-devicen-name: "test-colorspace-name"; -cchip-devicen-name: "test-colorspace-name";

• define the components for the DeviceN colorspace, using
a Separation colorspace definition for each such compo-
nent:
-cchip-cmyk('Pink', 0.0, 1.0, 0.0, 0.0) -cchip-cmyk('Pink', 0.0, 1.0, 0.0, 0.0)

Any alternate space – such as DeviceCMYK, ICC based RGB or
Lab, etc. may be used, but it is recommended to use the
same alternate space for all components in a given DeviceN
colorspace, as otherwise the DeviceN colorspace appearance
on devices that do not support all of its colorants, its presen-
tation may only be a rough approximation.

In order to use such a pdfChip DeviceN colorspace definition,
the property -cchip-devicen-cchip-devicen is used, with a reference to the
DeviceN colorspace name, and the necessary tint values for
each of its components:

• color: -cchip-devicen('tritone-devicen', 1.0, 0.2, 0.6); color: -cchip-devicen('tritone-devicen', 1.0, 0.2, 0.6);

The code below shows a complete example:

@-cchip-devicen{
 -cchip-devicen-name: 'six-colorant-space';
 -cchip-components:
 -cchip-cmyk('Cyan', 1.0, 0.0, 0.0, 0.0)
 -cchip-cmyk('Pink', 0.0, 1.0, 0.0, 0.0)
 -cchip-cmyk('Yellow', 0.0 ,0.0 ,1.0 ,0.0)
 -cchip-cmyk('Anthracite', 0.0, 0.0, 0.0, 1,0)
 -cchip-cmyk('Orange', 0.5, 0.5, 0.5, 0.0)
 -cchip-cmyk('Green', 0.0, 0.5, 0.5, 0.2);
}

.six-color {

3. What is new in 1.1 3.1 Support for DeviceN color spaces 107

callas pdfChip

 color: -cchip-devicen('six-colorant-space', 1.0, 0.2, 0.1, 0.0, 0.28, 0.02);
}

3. What is new in 1.1 3.1 Support for DeviceN color spaces 108

callas pdfChip

3.2 Passing variable information to
HTML template using "--import" on
the command line
As of pdfChip 1.1, it is possible to pass through variable infor-
mation from the command line into the pdfChip specific
"cchip" user data object. The idea is to associate a key on the
command line with a file containing a JSON expression. This
implies that a file with such JSON expression must exist be-
fore its content can be handed over as a command line para-
meter.

The "--import" command line parameter

Command line argument

--import=<key>:<file.json>

or

--import=<key>:<file.js>

The parameter --import is optional. If present it must also
provide a <key> and point to a file <file.json> containing a
JSON expression.

• <key> must be a string that can be used as a valid key in
JavaScript

• <file.js> resp. <file.json> must be an absolute or relative
file path.

Several instances of the --import parameter may be present
in a command line call, each creating their own data object.

JSON expression or Javascript variable

The variable information may be provided as a JavaScript file
or a JSON file:

3. What is new in 1.1 3.2 Passing variable information to HTML template using "--import" on the command line 109

callas pdfChip

• Where a JavaScript file <file.js> is provided it must
contain a single variable assignment. The JavaScript vari-
able name will be ignored, and only the JSON expression
is used.

• Where a JSON file <file.json> is provided it must
contain single JSON expression.

Using the variable information in JavaScript

The variable information provided in <file.js> or <file.json>
will be associated – using the <key> value – with the pdfChip
specific data object cchip.user.

Example

• pdfChip command line call: pdfChip command line call:

pdfChip ./in.html --import=addressesaddresses:./address-list.jsonaddress-list.json ./out.pdf

• content of the variable information as a JSON file content of the variable information as a JSON file adad--
dress-list.jsondress-list.json: :

{
 contactscontacts [
 {
 "fullname" : "John Doe",
 "zip" : "12345",
 "citycity" : "Big Town"
 },
 {
 "fullname" : "Mary Miller",
 "zip" : "54321",
 "city" : "Small Town"
 },
 ...
]
}

• content of the variable information as a JavaScript file content of the variable information as a JavaScript file
address-list.js address-list.js

var some_variable_name = {

3. What is new in 1.1 3.2 Passing variable information to HTML template using "--import" on the command line 110

callas pdfChip

 contactscontacts [
 {
 "fullname" : "John Doe",
 "zip" : "12345",
 "citycity" : "Big Town"
 },
 {
 "fullname" : "Mary Miller",
 "zip" : "54321",
 "city" : "Small Town"
 },
 ...
]
}

• retrieving data from the retrieving data from the addressesaddresses JSON expression JSON expression

var first_city = cchip.user.addressesaddresses.contactscontacts[0].city city

3. What is new in 1.1 3.2 Passing variable information to HTML template using "--import" on the command line 111

callas pdfChip

3.3 Additional info when placing PDF
pages (# of pages, page geometry)
pdfChip 1.1 introduces the possibility to determine informa-
tion about imported PDF pages, namely:

• number of pages of the PDF file from which a page has
been imported (see cchip.getPDFPage-
Count(obj) below)

• complete page geometry information for each of the
pages (see cchip.getPDFPageBox(obj, box)
below)

This capability makes it possible to find out essential infor-
mation about PDF pages to be imported without having to
preprocess such PDF file or without having to have prior
knowledge about such a PDF file. It is nonetheless required
to first import at least one page – if in doubt, import the first
page – of the resp. PDF. Using JavaScript it is then possible to
adjust the settings for the imported PDF page, or to import
additional PDF pages and set or adjust their page geometry
dependent settings as needed.

cchip.getPDFPageCount(obj)

cchip.getPDFPageCount(obj) returns the number
of pages in the PDF file, of which a page has been referenced
in the src attribute of an <image> element. The para-
meter obj must be a reference to that <image> element.
 One way to retrieve that reference to the <image> ele-
ment is the use of a function call such as docu-
ment.getElementById("my_pdf_id") , where
"my_pdf_id" is the ID property of that element.

Example for cchip.getPDFPageCount(obj)

The example shown below simply logs the number of page in
the imported PDF to the console (which will show up on std-
out) by using cchip.getPDFPageCount(obj).

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/

3. What is new in 1.1 3.3 Additional info when placing PDF pages (# of pages, page geometry) 112

callas pdfChip

TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html lang="en" xml:lang="en" xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type"/>
<title>Retrieve number of pages in imported PDF</title>
<script>
 function cchipPrintLoop(){
 var objobj = document.getElementById("my_pdf_id")document.getElementById("my_pdf_id");
 cchip.log('# of pages: ' + cchip.getPDFPageCount(cchip.getPDFPageCount(objobj)));
 cchip.printPages();
 }
</script>
</head>
<body>
 <div>

 </div>
</body>
</html>

Output (on stdout) from running the above example with an
imported PDF file of 17 pages:

JsCChipObject::log: # of pages: 17

cchip.getPDFPageBox(obj, box)

cchip.getPDFPageBox(obj, box) returns the
width and height for the PDF page referenced in the src at-
tribute of an <image> element. The parameter obj must
be a reference to that <image> element. One way to re-
trieve that reference to the <image> element is the use of
a function call such as document.getElement-
ById("my_pdf_id") , where "my_pdf_id" is the ID
property of that element.

Example for cchip.getPDFPageBox(obj, box)

The example shown below illustrates the use of
cchip.getPDFPageBox(obj,box) .

3. What is new in 1.1 3.3 Additional info when placing PDF pages (# of pages, page geometry) 113

callas pdfChip

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html lang="en" xml:lang="en" xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type"/>
<title>Retrieving number of pages for an imported PDF</title>
<script>
 function cchipPrintLoop(){
 var obj = document.getElementById("my_pdf_idmy_pdf_id");
 function printBox(boxbox) {
 cchip.log(box + " box: " + JSON.stringify(cchip.getPDFPageBox(cchip.getPDFPageBox(objobj, ,
boxbox))));
 }
 printBox("trimtrim");
 printBox("cropcrop");
 printBox("bleedbleed");
 printBox("media");
 printBox("artart");
 cchip.printPages();
 }
</script>
</head>
<body>
 <div>

 </div>
</body>

Output (on stdout) from running the above example:

JsCChipObject::log: trim box: {"height":467.7445983886719,"width":381.
3650207519531}
JsCChipObject::log: crop box: {"height":472.8420104980469,"width":385.918212890625}
JsCChipObject::log: bleed box: {"height":450,"width":375}
JsCChipObject::log: media box: {"height":487.5,"width":390}
JsCChipObject::log: art box: {"height":472.8420104980469,"width":385.918212890625}

3. What is new in 1.1 3.3 Additional info when placing PDF pages (# of pages, page geometry) 114

callas pdfChip

3.4 Creating multiple PDFs with one
pdfChip command line invocation
pdfChip 1.1 introduces a very simple mechanism to create
more than one PDF file from a single command line invoca-
tion of pdfChip:

• cchip.setOutputPdf() creates and opens a new
PDF file, PDF pages created after this function call will be
created in the 'new' PDF

• cchip.closeOutputPdf() closes the current PDF
output file; it should be called each time no more pages
are to be added to the current output PDF. Any output
PDF files not closed during processing by pdfChip will be
closed automatically once all processing has been com-
pleted. As on most operating systems the number of open
file handles is limited, care should be taken not to leave
output PDF files unnecessarily open.

When used to create just one PDF file per pdfChip command
line invocation, there is no need to use either of these two
function calls.

cchip.setOutputPdf()

cchip.setOutputPdf(<filename>)

Creates and opens a new output PDF file. Any PDF pages cre-
ated after calling this function will be created in the new out-
put PDF file <filename> . The folder of the newly cerated
output PDF file will be the same as the parent folder for the
output PDF file passed as the respective argument on the
command line.

The <filename> parameter contains the name of the out-
put PDF file to be created and opened. The file name must
comply with the rules for file names of the file system on
which it is to be created.

3. What is new in 1.1 3.4 Creating multiple PDFs with one pdfChip command line invocation 115

callas pdfChip

cchip.closeOutputPdf()

cchip.closeOutputPdf()

Closes the current output PDF file. A new output PDF file
must be created and opened after issuing this function call,
unless no further PDF pages are being created.

Example

In the following example, each time cchip.printPages() is
called, a new output PDF file is created and opened, filled
with pages by the cchip.printPages() call, and is then closed
(to avoid running out of file handles in cases where many
thousands of PDF file get created by pdfChip during a single
command line invocation - like would be typical when creat-
ing delivery notes, invoices, bank statements or similar high
volume PDF documents). The file names to be used are re-
trieved by a custom function getPdfFileName() that retrieves
it from an existing list of file names – but any other method
could be used equally well.

function createNextPDF()
{
 cchip.setOutputPdf(getPdfFileName(filename_list, seq_nr));
 cchip.printPages();
 cchip.closeOutputPdf()
}

3. What is new in 1.1 3.4 Creating multiple PDFs with one pdfChip command line invocation 116

callas pdfChip

4. Links between HTML
files are preserved when
converted into a single

PDF

4. Links between HTML files are preserved when converted into a single PDF 117

callas pdfChip

4.1 Links between HTML files are
preserved when converted into a sin-
gle PDF
The example creates a single PDF out of 9 different pieces (in-
dex.html files). The table of contents on the second "page" of
the first input index.html (0000 - Cover and TOC) has links to
all other input files. These remain working in the result PDF.

The sample has a build script in the respective folder that al-
lows for creating a result PDF from the single source files on a
Unix/Linux based computer. The following should work on
Windows with a proper path to pdfChip and when executed
from the root folder of the example.

"C:\Program folder\callas pdfChip\pdfChip" --overlay="._resources\html\overlay.
html" --underlay="._resources\html\underlay.html" ".\0000 - Cover and TOC\index.
html" ".\0100 - pdfChip in a Nutshell\index.html" ".\0200 - What pdfChip is not\in-
dex.html" ".\0300 - The History of pdfChip\index.html" ".\0400 - Main Features\in-
dex.html" ".\0500 - Learning pdfChip - the Tutorial\index.html" ".\0600 - pdfChip
Use Cases\index.html" ".\0700 - Licensing and Flavors\index.html" ".\0800 - Where
to Go from Here\index.html" ".\pdfChip Introduction.pdf"

pdfChip takes more than one input file and merges them into
a single output file (if not otherwise directed e.g. in the
cchip.PrintLoop).

Beginning with pdfChip 1.2 links between several input HTML
files are transferred into PDF links. In the example that re-
sults in a Table of Contents page that accurately links to the
respective chapters in the manual.

Please note that this is an old version of the pdfChip manual,
so it should only be used for testing pdfChip and not for read-
ing about pdfChip. E.g. the old manual does not have any in-
formation that "Links between HTML files are sustained
when converted into a single PDF"...

 pdfChip_Introduction_Example-1.zip

4. Links between HTML files are preserved when converted into a single PDF 4.1 Links between HTML files are preserved when
converted into a single PDF

118

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/000/212/635/original/pdfChip_Introduction_Example-1.zip

5. Barcodes and matrix
codes in pdfChip

5. Barcodes and matrix codes in pdfChip 119

callas pdfChip

5.1 List of supported barcodes and
matrix codes
The barcodes and matrix codes listed in the table below are
supported by pdfChip.

For a more detailed introduction to barcode objects, please
have a look at the pdfChip Reference article about barcode
objects. For more information about barcodes and matrix
codes in general please download the "Barcode Reference
Manual":

List of barcodes and matrix codes supported by
pdfChip

1 Code 11 123456 <param name="type"
value="Code 11">

2 Code 2 of 5
Standard 123456

<param name="type"
value="Code 2 of 5
Standard">

3 Code 2 of 5 In-
terleaved 123456

<param name="type"
value="Code 2 of 5 In-
terleaved">

4 Code 2 of 5 IA-
TA 123456

<param name="type"
value="Code 2 of 5 IA-
TA">

5 Code 2 of 5
Matrix 123456

<param name="type"
value="Code 2 of 5 Ma-
trix">

6 Code 2 of 5
DataLogic 123456

<param name="type"
value="Code 2 of 5 Dat-
aLogic">

7 Code 2 of 5 In- 123456 <param name="type"

 Barcode_Reference_EN_2018-06-11.pdf

5. Barcodes and matrix codes in pdfChip 5.1 List of supported barcodes and matrix codes 120

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/003/330/546/original/Barcode_Reference_EN_2018-06-11.pdf

dustry value="Code 2 of 5 In-
dustry">

8 Code 39 ABCDEF <param name="type"
value="Code 39">

9 Code 39 Full
ASCII ABCabc

<param name="type"
value="Code 39 Full
ASCII">

10 EAN 8 12345670 <param name="type"
value="EAN 8">

11 EAN 8 + 2 Dig-
its 1234567012

<param name="type"
value="EAN 8 + 2 Dig-
its">

12 EAN 8 + 5 Dig-
its 1234567012345

<param name="type"
value="EAN 8 + 5 Dig-
its">

13 EAN 13 1234567890128 <param name="type"
value="EAN 13">

14 EAN 13 + 2
Digits 123456789012812

<param name="type"
value="EAN 13 + 2 Dig-
its">

15 EAN 13 + 5
Digits 123456789012812345

<param name="type"
value="EAN 13 + 5 Dig-
its">

16 EAN/UCC 128 ABCabc <param name="type"
value="EAN/UCC 128">

17 UPC 12 123456789012 <param name="type"
value="UPC 12">

18 Codabar 2
Widths A123456A

<param name="type"
value="Codabar 2
Widths">

20 Code 128 ABCabc <param name="type"
value="Code 128">

21 DP Leitcode 012345678 <param name="type"
value="DP Leitcode">

5. Barcodes and matrix codes in pdfChip 5.1 List of supported barcodes and matrix codes 121

callas pdfChip

22 DP Identcode 012345678 <param name="type"
value="DP Identcode">

23 ISBN 13 + 5
Digits 978-1-23456-789-712345

<param name="type"
value="ISBN 13 + 5 Dig-
its">

24 ISMN 979-0-1234-5678-5 <param name="type"
value="ISMN">

25 Code 93 ABCDEF <param name="type"
value="Code 93">

26 ISSN 9771234567898 <param name="type"
value="ISSN">

27 ISSN + 2 Digits 977123456789812 <param name="type"
value="ISSN + 2 Digits">

28 Flattermarken 123456 <param name="type"
value="Flattermarken">

29 GS1 DataBar
(RSS-14) 00614141999996

<param name="type"
value="GS1 DataBar
(RSS-14)">

30 GS1 DataBar
Limited (RSS) 00614141999996

<param name="type"
value="GS1 DataBar
Limited (RSS)">

31
GS1 DataBar
Expanded
(RSS)

0100614141999996
<param name="type"
value="GS1 DataBar Ex-
panded (RSS)">

32 Telepen Alpha ABCabc <param name="type"
value="Telepen Alpha">

33 UCC 128 ABCabc <param name="type"
value="UCC 128">

34 UPC A 123456789012 <param name="type"
value="UPC A">

35 UPC A + 2 Dig-
its 12345678901212

<param name="type"
value="UPC A + 2 Dig-
its">

36 UPC A + 5 Dig- 12345678901212345 <param name="type"

5. Barcodes and matrix codes in pdfChip 5.1 List of supported barcodes and matrix codes 122

callas pdfChip

its value="UPC A + 5 Dig-
its">

37 UPC E 12345670 <param name="type"
value="UPC E">

38 UPC E + 2 Dig-
its 1234567012

<param name="type"
value="UPC E + 2 Dig-
its">

39 UPC E + 5 Dig-
its 1234567012345

<param name="type"
value="UPC E + 5 Dig-
its">

40 USPS PostNet
5 (ZIP) 12345

<param name="type"
value="USPS PostNet 5
(ZIP)">

41 USPS PostNet
6 (ZIP+cd) 123455

<param name="type"
value="USPS PostNet 6
(ZIP+cd)">

42 USPS PostNet
9 (ZIP+4) 123456789

<param name="type"
value="USPS PostNet 9
(ZIP+4)">

43 USPS PostNet
10 (ZIP+4+cd) 1234567895

<param name="type"
value="USPS PostNet
10 (ZIP+4+cd)">

44 USPS PostNet
11 (ZIP+4+2) 12345678901

<param name="type"
value="USPS PostNet
11 (ZIP+4+2)">

45
USPS PostNet
12
(ZIP+4+2+cd)

123456789014
<param name="type"
value="USPS PostNet
12 (ZIP+4+2+cd)">

46 Plessey 123456 <param name="type"
value="Plessey">

47 MSI 123456 <param name="type"
value="MSI">

48 SSCC 18 012345678901234560 <param name="type"
value="SSCC 18">

50 LOGMARS ABCDEF <param name="type"

5. Barcodes and matrix codes in pdfChip 5.1 List of supported barcodes and matrix codes 123

callas pdfChip

value="LOGMARS">

51 Pharmacode
One-Track 123456

<param name="type"
value="Pharmacode
One-Track">

52 PZN7 1234562 <param name="type"
value="PZN7">

53 Pharmacode
Two-Track 123456

<param name="type"
value="Pharmacode
Two-Track">

54 Brazilian CEP-
Net 12345678

<param name="type"
value="Brazilian CEP-
Net">

55 PDF417 ABCabc <param name="type"
value="PDF417">

56 PDF417 Trun-
cated ABCabc

<param name="type"
value="PDF417 Trun-
cated">

57 MaxiCode ABCabc <param name="type"
value="MaxiCode">

58 QR-Code ABCabc <param name="type"
value="QR-Code">

59 Code 128
Subset A ABCabc

<param name="type"
value="Code 128 Sub-
set A">

60 Code 128
Subset B ABCabc

<param name="type"
value="Code 128 Sub-
set B">

61 Code 128
Subset C ABCabc

<param name="type"
value="Code 128 Sub-
set C">

62 Code 93 Full
ASCII ABCabc

<param name="type"
value="Code 93 Full
ASCII">

63 Australian
Post Custom 12345678 <param name="type"

value="Australian Post

5. Barcodes and matrix codes in pdfChip 5.1 List of supported barcodes and matrix codes 124

callas pdfChip

Custom">

64 Australian
Post Custom2 12345678ABab

<param name="type"
value="Australian Post
Custom2">

65 Australian
Post Custom3 12345678ABCabc

<param name="type"
value="Australian Post
Custom3">

66
Australian
Post Reply
Paid

12345678
<param name="type"
value="Australian Post
Reply Paid">

67 Australian
Post Routing 12345678

<param name="type"
value="Australian Post
Routing">

68 Australian
Post Redirect 12345678

<param name="type"
value="Australian Post
Redirect">

69 ISBN 13 978-1-23456-789-7 <param name="type"
value="ISBN 13">

70
Royal Mail 4
State
(RM4SCC)

ABCDEF1234
<param name="type"
value="Royal Mail 4
State (RM4SCC)">

71 Data Matrix ABCabc <param name="type"
value="Data Matrix">

72 EAN 14 (GTIN
14) 00614141999996

<param name="type"
value="EAN 14 (GTIN
14)">

73 VIN / FIN VB1YYY1JX3M386752 <param name="type"
value="VIN / FIN">

74 Codablock-F ABCabc <param name="type"
value="Codablock-F">

75 NVE 18 012345678901234560 <param name="type"
value="NVE 18">

76 Japanese
Postal 1234567

<param name="type"
value="Japanese
Postal">

5. Barcodes and matrix codes in pdfChip 5.1 List of supported barcodes and matrix codes 125

callas pdfChip

77 Korean Postal
Authority 123456

<param name="type"
value="Korean Postal
Authority">

78
GS1 DataBar
Truncated
(RSS)

00614141999996
<param name="type"
value="GS1 DataBar
Truncated (RSS)">

79 GS1 DataBar
Stacked (RSS) 00614141999996

<param name="type"
value="GS1 DataBar
Stacked (RSS)">

80
GS1 DataBar
Stacked Om-
nidir (RSS)

00614141999996

<param name="type"
value="GS1 DataBar
Stacked Omnidir
(RSS)">

81
GS1 DataBar
Expanded
Stacked (RSS)

0100614141999996

<param name="type"
value="GS1 DataBar Ex-
panded Stacked
(RSS)">

82 PLANET 12
digit 123456789014

<param name="type"
value="PLANET 12 dig-
it">

83 PLANET 14
digit 12345678901239

<param name="type"
value="PLANET 14 dig-
it">

84 Micro PDF417 ABCabc <param name="type"
value="Micro PDF417">

85
USPS Intelli-
gent Mail Bar-
code (IM)

12345678901234567890
<param name="type"
value="USPS Intelligent
Mail Barcode (IM)">

86 Plessey Bidi-
rectional 123456

<param name="type"
value="Plessey Bidirec-
tional">

87 Telepen 123456 <param name="type"
value="Telepen">

88 GS1 128 (EAN/
UCC 128) 01090999995432171512052110Abc123

<param name="type"
value="GS1 128 (EAN/
UCC 128)">

5. Barcodes and matrix codes in pdfChip 5.1 List of supported barcodes and matrix codes 126

callas pdfChip

89 ITF 14 (GTIN
14) 00614141999996

<param name="type"
value="ITF 14 (GTIN
14)">

90 KIX AaBbCcDdEe <param name="type"
value="KIX">

91 Code 32 012345676 <param name="type"
value="Code 32">

92 Aztec Code ABCabc <param name="type"
value="Aztec Code">

93 DAFT Code DAFT <param name="type"
value="DAFT Code">

94 Italian Postal
2 of 5 123456789012

<param name="type"
value="Italian Postal 2
of 5">

96 DPD 0007110601632532948375179276 <param name="type"
value="DPD">

97 Micro QR-
Code ABCDEF

<param name="type"
value="Micro QR-
Code">

98 HIBC LIC 128 +A99912345/9901510X3 <param name="type"
value="HIBC LIC 128">

99 HIBC LIC 39 +A99912345/9901510X3 <param name="type"
value="HIBC LIC 39">

100 HIBC PAS 128 +/EAH783/Z34H159 <param name="type"
value="HIBC PAS 128">

101 HIBC PAS 39 +/EAH783/Z34H159 <param name="type"
value="HIBC PAS 39">

102 HIBC LIC Data
Matrix +A99912345/9901510X3

<param name="type"
value="HIBC LIC Data
Matrix">

103 HIBC PAS Da-
ta Matrix +/EAH783/Z34H159

<param name="type"
value="HIBC PAS Data
Matrix">

104 HIBC LIC QR- +A99912345/9901510X3 <param name="type"

5. Barcodes and matrix codes in pdfChip 5.1 List of supported barcodes and matrix codes 127

callas pdfChip

Code value="HIBC LIC QR-
Code">

105 HIBC PAS QR-
Code +/EAH783/Z34H159

<param name="type"
value="HIBC PAS QR-
Code">

105 HIBC PAS
Aztec Code +/EAH783/Z34H159

<param name="type"
value="HIBC PAS Aztec
Code">

106 HIBC LIC
PDF417 +A99912345/9901510X3

<param name="type"
value="HIBC LIC
PDF417">

107 HIBC PAS
PDF417 +/EAH783/Z34H159

<param name="type"
value="HIBC PAS
PDF417">

108 HIBC LIC Mi-
cro PDF417 +A99912345/9901510X3

<param name="type"
value="HIBC LIC Micro
PDF417">

109 HIBC PAS Mi-
cro PDF417 +/EAH783/Z34H159

<param name="type"
value="HIBC PAS Micro
PDF417">

110 HIBC LIC Cod-
ablock-F +A99912345/9901510X3

<param name="type"
value="HIBC LIC Cod-
ablock-F">

111 HIBC PAS
Codablock-F +/EAH783/Z34H159

<param name="type"
value="HIBC PAS Cod-
ablock-F">

112 QR-Code 2005 ABCabc <param name="type"
value="QR-Code 2005">

113 PZN8 12345678 <param name="type"
value="PZN8">

115 DotCode ABCabc <param name="type"
value="DotCode">

116 Han Xin Code ABCabc <param name="type"
value="Han Xin Code">

117 USPS Intelli- 9102805213683062522920 <param name="type"

5. Barcodes and matrix codes in pdfChip 5.1 List of supported barcodes and matrix codes 128

callas pdfChip

gent Mail
Package
(IMpb)

value="USPS Intelligent
Mail Package (IMpb)">

118
Swedish
Postal Ship-
ment Item ID

EM100027995SE
<param name="type"
value="Swedish Postal
Shipment Item ID">

119
Royal Mail
Mailmark® 2D
Barcode

JGB 012100123412345678AB19XY1A 0
ABCDEFGHIJ1234567890ABCDEFGHIJ1234567890A

<param name="type"
value="Royal Mail
CMDM Mailmark">

120
UPU S10 –
Generic
Postal Code

EM100027995SE <param name="type"
value="UPU S10">

121

Royal Mail
Mailmark®
4-state Bar-
code

41038422416563762EF61AH8T
<param name="type"
value="Royal Mail Mail-
mark 4-state">

124 HIBC LIC
Aztec Code +A99912345/$$52001510X3

<param name="type"
value="HIBC LIC Aztec
Code">

124

Pharmacy
Product Num-
ber Code
(PPN Code)

9N110375286414
<param name="type"
value="PPN (Pharmacy
Product Number)">

125 NTIN Code 04150123456782
<param name="type"
value="NTIN (Data Ma-
trix)">

Note:
The ID listed in the table above is based on the ID assigned
internally to the respective barcode by the used library. They
may therefore be not unique.

Equivalent barcodes

Some barcodes are known by regionally different names:

5. Barcodes and matrix codes in pdfChip 5.1 List of supported barcodes and matrix codes 129

callas pdfChip

Name used in barcode library Name used in barcode library Alternative names Alternative names

EAN 13 JAN / Japanese Article Number

Pharmacode One-Track LAETUS-Code

EAN/UCC 128
GS1-128
EAN-128
UCC-128

Code 2 of 5 Interleaved I-2/5
Code 25

Royal Mail 4 State (RM4SCC) Singapore Post 4-State Customer Code (Sin-
Post)

5. Barcodes and matrix codes in pdfChip 5.1 List of supported barcodes and matrix codes 130

callas pdfChip

5.2 Extended list of parameters for
the barcode object
As of version 1.2, pdfChip supports a substantially extended
list of parameters for the barcode object. Many of these para-
meters are symbology specific, and a good understanding of
how a given barcode or matrix code works is required in or-
der to successfully use the parameters.

Whenever uncertain which parameters to use, and how to
use them, please contact the callas software support team at
support@callassoftware.com.

Parameter Parameter Value Value Description Description

activetextindex number

Sets the curr

The user c
rently activ

That me
tIndex(pBarCode, 1) all f
ject #1 until another t
ner.

Note:

By default the human r

You can chang
that of the human r

autocorrect either "true" or "false"

Sets aut

If set to true TBarCode perf
the input dat

- Code 39: T

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 131

callas pdfChip

mailto:support@callassoftware.com

PPararameametter er VValue alue Description Description

acters ar

- ISBN-13/IS
the bar c

- Code 2of5 Int
data digits is odd (2/5 IL supports only e

- Code-128: R
and all oc

- GS1-128: R
(the FNC1 at fir

Note: Should alw

aztec_enforcebinaryencoding either "true" or "false"

Determines whe
mode or not

Note: Binar
bols than t

aztec_errorcorrection number

Sets the number of err
(from 0 t

Note: B

3 additional check w

aztec_format_format List of possible values: "Default" (default value) or "UCCEAN"
 or "Industry" Specifies the Azt

aztec_format_specifier text string Specifies the Azt
try format

aztec_runemode either "true" or "false"

Determines whe
mode.

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 132

callas pdfChip

PPararameametter er VValue alue Description Description

Note: Azt
tion. Azt

aztec_size

List of possible values:, "Default" (used as default), "15x15",
"19x19", "23x23", "27x27", "31x31", "37x37", "41x41", "45x45",
"49x49", "53x53", "57x57", "61x61", "67x67", "71x71", "75x75",
"79x79", "83x83", "87x87", "91x91", "95x95", "101x101",
"105x105", "109x109", "113x113", "117x117", "121x121",
"125x125", "131x131", "135x135", "139x139", "143x143",
"147x147", "151x151", "19x19_Rd", "23x23_Rd", "27x27_Rd"
and "Rune"

Sets Azt

Specifies the siz
columns and c
size is select
comput

Note: The siz
for reader pr

barshape_shape List of possible values: "Default", "Rectangle", "Ellipse",
"BigEllipse", "RoundedRectangle", "Image"

Sets the b

Attention: F
ly bar shape "Def
danger r

A chang
advertisements, f
readability of the b

Note: "Imag

barwidthreduction number with unit, allowed units are "mm", "cm", "m", "in",
"ft", "pt", "pc" and "%"

Sets bar

Specifies the r
in the b
This pr
such print
the ink spr
setting a b
an suit
tings bec
paper, and on the ink

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 133

callas pdfChip

PPararameametter er VValue alue Description Description

the theor
tion value.

bearerbars List of possible values: "none" (used as default), "topbot-
tom", "top", "bottom" and "Rectangle"

Sets the type of the be

By default
bearer b
tom" or "R
for the def

The vertic
et zone at left and right >= 12 modules (the quie
essary t

Remarks: U
bearer b
the printing plat
also enhanc
probability of misr

Bearer-b
(ITF-14) and ar
drawn as a r
synchr
bars.

See the Bar

bearerwidth number with unit, allowed units are "mm", "cm", "m", "in",
"ft", "pt" and "pc"

Sets the width of the be
mm].

By default
bearer b
tom" or "R
for the def

The vertic
et zone at left and right >= 12 modules (the quie

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 134

callas pdfChip

PPararameametter er VValue alue Description Description

essary t

cbf_columns number

Adjusts the number of Codablock

Specifies the number of c
Codablock
number of c

cbf_format List of possible values: "Default" (used as default) and "UC-
CEAN"

Sets Codablock

Specifies the enc
EAN or the def

cbf_rowheight number

Sets the r

Specifies the height of an individual r
value is not se
according t
sure that the bounding r
ping.

cbf_rows number

Adjusts the number of Codablock

Specifies the number of r
ablock
of rows is c

cbf_rowseparatorheight number

Sets the height of the Codablock

Specifies the height of the r
value is not se
calculat
gle). If se
to avoid clipping.

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 135

callas pdfChip

PPararameametter er VValue alue Description Description

cdmethod

List of possible values: "None" (used as default), "Standard",
"Mod10", "Mod43", "2Mod47", "DPLeit", "DPIdent", "1Code11",
"2Code11", "USPSPostnet", "MSI1", "MSI2", "Plessey", "EAN8",
"EAN13", "UPCA", "UPCE", "EAN128", "Code128", "RM4SCC",
"PZN", "Mod11W7", "EAN14", "Mod10Kor", "Mod10Pla",
"Mod10ItlPst25", "Mod36", "Mod16", "Mod10Luhn", "VIN",
"Mod10LuhnRev", "Mod23PPSN", "Mod10IMPackage",
"Mod11W10" or "SwedishPostal"

Chooses check

The me
the adjust
user-friendly as possible, a st
each bar
codes ther
method is r
ogies hav
Code-128). This check sum is alw
code Ð r

Attention: Adjust only check
or recommended f
is gener
charact
er that it c
adapted t

codepage

List of possible values:
"Custom", "ANSI",
"Windows1252",
"Latin_I", "ASCI-
IExt_437", "UTF8",
"Korean", "Japan-
ese_Shift_JIS", "Sim-
plified_Chinese",
"Trad_Chinese_Big5",
"ANSI_Cyrillic",
"KOI8_R", "GB18030",
"MAC_Roman",
"ISO_8859_1",
"ISO_8859_2",
"ISO_8859_3",
"ISO_8859_4",
"ISO_8859_5",
"ISO_8859_6",
"ISO_8859_7",
"ISO_8859_8",
"ISO_8859_9",

Predefined c

If the enc
the value "c
ed code p
the code p

The items list
ten used c

When def
barcode type is used.
Symbolog
For example: PDF417/
MicroPDF ... CP437
QR-Code ... Shift JIS
All other b
ANSI.

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 136

callas pdfChip

PPararameametter er VValue alue Description Description

"ISO_8859_10",
"ISO_8859_11",
"ISO_8859_12",
"ISO_8859_13",
"ISO_8859_14",
"ISO_8859_15",
"ISO_8859_16",
"UTF16LE",
"UTF16BE", "Default"

compression List of possible values: "None" (used as default), "Deflate",
"GZip", "ZLib" Sets compr

displaytext text string

Sets the c
human r

Note: "displayt
able te
(only if the human r

The curr
tactive

dm_enforcebinaryencoding either "true" or "false

Determines whe
mode or not

Note: Binar
bols than t

dm_format
List of possible values: "Default" (default value) or "UC-
CEAN", "Industry", "Macro05", "Macro06", "Reader" and "Post-
Matrix"

Specifies Dat

Specifies the g
encoding scheme is used.

dm_rectangular either "true" or "false" Switches be

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 137

callas pdfChip

PPararameametter er VValue alue Description Description

Per def
Change this behavior with this p

dm_size

List of possible values: "Default" (used as default), "10x10",
"12x12", "14x14", "16x16", "18x18", "20x20", "22x22", "24x24",
"26x26", "32x32", "36x36", "40x40", "44x44", "48x48", "52x52",
"64x64", "72x72", "80x80", "88x88", "96x96", "104x104",
"120x120", "132x132", "144x144", "8x18", "8x32", "12x26",
"12x36", "16x36" or "16x48"

Sets Dat

Specifies the siz
columns and c
squares or 8 x 18 and 16 x 48 f
selected the minimal r
automatic

dotcode_enforcebinaryencoding either "true" or "false"

Determines whe
mode or not

Note: Binar
bols than t

dotcode_format_format List of possible values: "Auto", "Generic", "GS1", "Industry",
"Macro05", "Macro06", "Macro12", "MacroCustom", "Reader"

Specifies DotCode enc

Specifies the enc

dotcode_format_specifier text string Format specifier f
letter (upper or lo

dotcode_mask List of possible values: "Default" (used as default), "0", "1",
"2" and "3"

Sets QR

Specifies the so
to achie
is comput
- if the enc
mask.

dotcode_printdirection List of possible values: "DontCare" (used as default), "Opti-
mizeHorizontal" and "OptimizeVertical"

Sets the print dir
optimiz

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 138

callas pdfChip

PPararameametter er VValue alue Description Description

Specifies the e
care" is select

dotcode_size_mode List of possible values: "Default", "RatioWidthHeight", "Fixed-
Width", "FixedHeight"

Specifies DotCode symbol siz

Specifies the siz
fault".

dotcode_size_size text string

Specifies DotCode symbol siz

Depending on the "dot
should hav

"Default": the "dot

"RatioWidthHeight": the "dot
the ratio be
are values be

"FixedWidth": the "dot
width in number of dots

"FixedHeight": the "dot
height in number of dots

encodingmode List of possible values: "CodePage" (used as default), "Low-
Byte", "ByteStream", "BYTE_HILO", "Hexadecimal"

Sets the dat

The dat
data. Depending on whe
gle char
"encodingmode" and "c
Manual f

format text string Sets format string applied t

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 139

callas pdfChip

PPararameametter er VValue alue Description Description

The format string is applied t
encoded. U
erations (lik
switching, st

Please r

hanxin_eclevel List of possible values: "L1" (used as default), "L2", "L3" and
"L4"

Sets Han Xin Code err

Sets Han Xin Code err
correction le

hanxin_enforcebinaryencoding either "true" or "false"

Determines whe
mode or not

Note: Binar
bols than optimiz

hanxin_mask List of possible values: "Default" (used as default), "0", "1",
"2" and "3"

Sets Han Xin Code mask p

Specifies the so
Code to achie
mask is c
suming - if the enc
defined mask

hanxin_version

List of possible values: "Default" (used as default), "1", "2",
"3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15",
"16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26",
"27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37",
"38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48",
"49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59",
"60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70",
"71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81",

Specifies the symbol v

Specifies the siz
number of diff
sions". If no fix
the symbol is c

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 140

callas pdfChip

PPararameametter er VValue alue Description Description

"82", "83" and "84"

hres number

Sets user defined horiz

Sets output r
lation f
able de
resolution).

Note: This f
bar code dimensions c

maxi_mode number

Specifies the oper

Specifies the oper
Mode "4"

Mode "2": SCM Numeric - Struct
Code only numeric, up t

Mode "3": SCM Alphanumeric - Struct
(Postal Code alphanumeric, up t

Mode "4": F
quences (St

Mode "5": F
rection (saf

maxi_scm_countrycode text string

Countr
(SCM).

Set MaxiCode struct

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 141

callas pdfChip

PPararameametter er VValue alue Description Description

For a de
Barcode R

maxi_scm_postalcode text string

The Post
tured Carrier Messag
other char

Set MaxiCode struct

For a de
Barcode R

maxi_scm_serviceclass text string

Service class ["000"
the modes 2 and 3 (SCM).

Set MaxiCode struct

For a de
Barcode R

maxi_undercut number

Undercut in per

Specifies the under

This value influenc
(which ar
value, if r
cur.

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 142

callas pdfChip

PPararameametter er VValue alue Description Description

Note: Def

maxi_usepreamble_date text string

Specifies the v
- the cent
cally int
encoded dat

Note: The p
true!

Activat

Specifies whe
coded in the symbol he
vant in p
additional document Bar
parame

maxi_usepreamble_use either "true" or "false"

Use pre

Activat

Specifies whe
coded in the symbol he
vant in p
additional document Bar
parame

modulewidth number with unit, allowed units are "mm", "cm", "m", "in",
"ft", "pt" and "pc"

Sets a fix
of 0.001 mm).

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 143

callas pdfChip

PPararameametter er VValue alue Description Description

The module width is defined as the width of the smallest ele
ment (b
specified in 1/1000 mm. If the module width is not se
ly (default), the module width is aut
object siz
encoded. If a v
fore of the whole b
fluence the r
the amount of dat
symbologies the module width should not f
mm.

mpdf417mode
List of possible values: "Default" (used as default), "EAN128",
"C128Std", "C128FNC2", "EAN128Lk", "05Macro", "06Macro",
"CCA", "CCB" and "Binary"

Sets Micr

This option adjusts ho
most c
scanner har
check with y
input dat
mode will be swit
smallest possible symbol.

mpdf417version

List of possible values:, "Default", "1x11", "1x14", "1x17",
"1x20", "1x24", "1x28", "2x8", "2x11", "2x14", "2x17", "2x20",
"2x23", "2x26", "3x6", "3x8", "3x10", "3x12", "3x15", "3x20",
"3x26", "3x32", "3x38", "3x44", "4x4", "4x6", "4x8", "4x10",
"4x12", "4x15", "4x20", "4x26", "4x32", "4x38" and "4x44"

Sets Micr

The Micr
and dat
the symbol. Y
"4x44" (horiz
set explicitly
alyzing the input dat
matically

mqr_mask List of possible values: "Default" (used as default), "0", "1",
"2", "3" and "4"

Sets Micr

Specifies the so
Code to achie
mask is c
the enc

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 144

callas pdfChip

PPararameametter er VValue alue Description Description

mask.

mqr_version List of possible values: "Default" (used as default), "0", "1",
"2", "3" and "4"

Specifies the symbol v

Specifies the siz
number of diff
sions". If no fix
the symbol is c

notchheight number with unit, allowed units are "mm", "cm", "m", "in",
"ft", "pt" and "pc"

Sets the additional length of the synchr
es).

The term "not
some symbologies (lik
a little bit long
these synchr
cally. U
bars.

Note: The not
lation. So it is r
exceed the b

Though ne
ed to use positiv

options text string

Sets the b

The option string c
lowed b
charact

The format is: name=v

A name must be a v
be given in the f

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 145

callas pdfChip

PPararameametter er VValue alue Description Description

As Simple V

Simple v
caped b
are true and f

e.g.: NAME_BOOL=true NAME_NUMBER=123 NAME_TEX
NAME_WITHSP

As Text V

Text values ar
tain sp
that oc

e.g.: NAME_TEX
NAME_WITHQUO

As Comple

Comple
plex value may c
ues.

e.g.: NAME_C
BER=123}

The follo

DRAW_P
PostScript output

DRAW_BarWidthR
mode f

CHECK_CDMe
BCSetCDMe

CHECK_CodaBarInclude

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 146

callas pdfChip

PPararameametter er VValue alue Description Description

whether t
check digit c

DATA_T
cape sequenc

DATA_CodeP
data (see BC

MQR_V
BCSet_MQR_V

MQR_Mask=[enum] - se
Set_MQR_Mask

QrCode_V
Set_QR_V

QrCode_F
Set_QR_F

QrCode_F
application indic

QrCode_ECL
level (see BC

QrCode_Mask=[enum] - se
Set_QR_Mask

QrCode_KanjiChineseComp
compaction mode (see BC
e_QRMBComp

QrCode_Append={sum=[int] inde
the QR

DataMatrix_Siz
Set_DM_Siz

DataMatrix_R
bol (see BC

DataMatrix_F

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 147

callas pdfChip

PPararameametter er VValue alue Description Description

BCSet_DM_F

DataMatrix_Append={sum=[int] inde
the Dat

DataMatrix_Enc
coding Mode (0 .. optimal, 1 .. enf

DataMatrix_EC
native EC

DataMatrix_Captiv
scanner mode.

HanXin_V
Set_HanXin_V

HanXin_Enf
encoding (see BC

HanXin_ECL
el (see BC

HanXin_Mask=[enum] - se
Set_HanXin_Mask

DotCode_Siz
Size (see BC

DotCode_PrintDir
tion (see BC
tion).

DotCode_Enf
encoding (see BC

DotCode_F
DotCode f

DotCode_Mask=[enum] - se
Set_DotCode_Mask

EanUpc_Not
(see BC

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 148

callas pdfChip

PPararameametter er VValue alue Description Description

EanUpc_Sho
(see Format Se

EanUpc_L
out incr

Valid values f

[bool] (boole

[enum] (enumer
according enumer

[string] (string

[int] (int

[byte] (b

pdf417_addressee text string

Sets Macr

Specifies addr

Optional field t
er block

pdf417_checksum number

Sets Macr

Sets 16-Bit CRC checksum (using C
x12 + x5 + 1 o

Optional field t
er block

pdf417_columns number Sets the number of PDF417 c

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 149

callas pdfChip

PPararameametter er VValue alue Description Description

Sets the number of gr
fixed value. If not se
tomatic

pdf417_eclevel number

Sets PDF417 err

Set the "Err
Possible v
tion (no EC) and 8 me
error corr

pdf417_encodingmode List of possible values: "Default" (used as default) and "Bina-
ry"

Sets PDF417 enc

Sets the PFD417 enc
the gener
binary dat
the bett

pdf417_fileid text string

Sets Macr

The File
data chain. F
File-ID ar
index.

Macro PDF will be enabled only if the Se
File-ID ar

pdf417_filename text string

Sets Macr

Specifies file name (alphanumeric, v

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 150

callas pdfChip

PPararameametter er VValue alue Description Description

Optional field t
er block

pdf417_filesize number

Sets Macr

Specifies t
length field)

Optional field t
er block

pdf417_rowcolratio text string

Sets PDF417 r

Sets the r
Does only w
"pdf417_c
row:column r

pdf417_rowheight number

Sets PDF417 r

Sets the height of a PDF417 r
mm]. If not se

pdf417_rows number

Sets number of PDF417 r

Sets the number of gr
not set
the def

pdf417_segcount number

Sets Macr

Specifies t

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 151

callas pdfChip

PPararameametter er VValue alue Description Description

Optional field t
er block

pdf417_segindex number

Sets Macr

Index of the act
with 1 and incr
chain.

Macro PDF will be enabled only if the Se
File ID ar

PDF417 allo
This might be done if the dat
symbol or f

The so c
control inf
struct the dat
functionality is also av

Note: When r
ner, the inde

pdf417_seglast either "true" or "false"

Marks the act
PDF417 symbol chain.

Marks the curr
symbol chain. This f
PDF417.

pdf417_sender text string Sets Macr

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 152

callas pdfChip

PPararameametter er VValue alue Description Description

Specifies sender (alphanumeric, v

Optional field t
er block

pdf417_timestamp number

Sets Macr

Specifies time st
1, 1970 00:00 GMT) (numeric)

Optional field t
er block

qr_eclevel List of possible values:, "Low" (used as default), "Medium",
"Quartil" and "High"

Sets QR

Sets QR
error corr

qr_fmtappindicator text string

Set QR
try" format

Is used only in c
cation Indic
put stre

qr_format List of possible values: "Default" (default value) or "UCCEAN"
 or "Industry"

Specifies QR

Specifies the g
encoding scheme without a special he

qr_kanjichinesecompaction List of possible values: "Default" (used as default), "None",
"Kanji" and "Chinese"

Enables QR
tion.

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 153

callas pdfChip

PPararameametter er VValue alue Description Description

Enables the c
ters int
Unicode (wide string f
page se
mode L
JIS X 0208 and the Chinese char
Chinese) multi b
acters is done ac
97-001); Comp
to GB/T 18284-2000.

Note: Do not use this option f
charact
ent def

qr_mask List of possible values: "Default" (used as default), "0", "1",
"2", "3", "4", "5", "6" and "7"

Sets QR

Specifies the so
to achie
is comput
the enc
mask.

qr_version

List of possible values:, "Default" (used as default), "1", "2",
"3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15",
"16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26",
"27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37",
"38", "39" and "40"

Specifies the symbol v

Specifies the siz
of differ
no fixed siz
bol is c

quietzonebottom number

Sets the siz

Specifies the siz
units. A quie
left of a b

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 154

callas pdfChip

PPararameametter er VValue alue Description Description

Note: If y
the quie
"narrow b

quietzoneleft number

Sets the siz
units.

Specifies the siz
units. A quie
left of a b

Note: If y
the quie
"narrow b

quietzoneright number

Sets the siz
units.

Specifies the siz
units. A quie
left of a b

Note: If y
the quie
"narrow b

quietzonetop number

Sets the siz

Specifies the siz
units. A quie
left of a b

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 155

callas pdfChip

PPararameametter er VValue alue Description Description

Note: If y
the quie
"narrow b

quietzoneunit List of possible values: "X", "mm", "cm", "m", "in", "ft", "pt"
and "pc" ("X" is the current "modulewidth") The units in which the siz

ratio text string

Set print

Specifies the print
the single b
"1B:2B:...1S:2S" wher
most narr
space. The number of v
values f
It is explained in mor

rotation List of possible values: "0" (used as default), "90", "180", "270"

Sets the r

Rotates the b

rss_segmperrow number

Sets dat
a fixed v

The value of "r
words (se
Values in the r
encoded in p
ues are aut
number of dat

swap_foreground_background either "true" or "false" (used as default)

Swaps b

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 156

callas pdfChip

PPararameametter er VValue alue Description Description

Using C
(or the squar
the back
tween them is dr
white. This le
age or gr

textalignment List of possible values: "Default" (used as default), "Left",
"Right", "Center"

Sets the alignment of the curr
the human r

The def

Note: The curr
ing "activ

textdistance number with unit, allowed units are "mm", "cm", "m", "in",
"ft", "pt" and "pc"

Sets the dist
barcode.

The def
be overridden b

Note: This f
text but NO

textplacement List of possible values: "below" (used as default), "none" and
"above"

Defines whe
has text ne

vres number

Sets user defined v

Sets output r
lation f
able de
resolution).

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 157

callas pdfChip

PPararameametter er VValue alue Description Description

Note: This f
bar code dimensions c

5. Barcodes and matrix codes in pdfChip 5.2 Extended list of parameters for the barcode object 158

callas pdfChip

5.3 How to define the size of barcode
objects
Barcodes and matrix codes are created through "barcode ob-
jects", which are a pdfChip specific custom type of <object>.

Such objects can be used in HYML content, inside SVG objects
and inside SVG files (as of pdfChip 1.2, SVG files can be con-
verted directly to PDF, without having to embed them in
HTML).

Barcode object example

An example for the syntax of a barcode object is shown be-
low:

 <object type="application/barcode">
 <param name="data" value="123456789012">
 <param name="type" value="EAN 13">
 <param name="modulewidth" value="0.33mm">
 <param name="barwidthreduction" value="10%">
 <param name="textplacement" value="none">
 </object>

Defining the size of a barcode or matrix code

In many usage scenarios, the exact size of a barcode or ma-
trix code is important. There are several ways to define this
size:

• by providing a value for the "modulewidth" parameter
(i.e. the width of smallest element in a barcode or the
width or height of the smallest element in a matrix code)

• by providing "width" and "height" attributes in the <ob-
ject> tag

The "width" and "height" attributes in the <object> tag val-
ues take precedence over the "modulewidth" parameter.
Where it is necessary to define a certain for a barcode or ma-
trix code but still let the "modulewidth" drive the actual size
of the barcode or matrix code, "width" and "height" attribut-
es should be present for the parent of the <object> tag.

5. Barcodes and matrix codes in pdfChip 5.3 How to define the size of barcode objects 159

callas pdfChip

Using "modulewidth" to define the size of an EAN code

 <div>
 <object type="application/barcode" style="background-color: #eff;">
 <param name="data" value="123456789012">
 <param name="type" value="EAN 13">
 <param name="modulewidth" value="0.33mm"> <param name="modulewidth" value="0.33mm">
 <param name="barwidthreduction" value="10%">
 <param name="quietzoneleft" value="10">
 <param name="quietzoneright" value="10">
 <param name="quietzoneunit" val-
ue="X">
 </object>
 </div>

Using "width" style attribute to define the size of an
EAN code

 <div style="width: 50mm; height: 30mm; background-color: #fef">
 <object type="application/barcode" style="width: 70mmstyle="width: 70mm; height:
30mm; background-color: #eff;">
 <param name="data" value="123456789012">
 <param name="type" value="EAN 13">
 <param name="modulewidth" value="0.33mm">
 <param name="barwidthreduction" value="10%">
 <param name="quietzoneleft" value="10">
 <param name="quietzoneright" value="10">
 <param name="quietzoneunit" val-
ue="X">
 </object>
 </div>

Using "modulewidth" to define the size of an EAN
code, while creating an area for the EAN code by
setting the size of the parent <div>

 <divdiv style="width: 70mm;width: 70mm; height: 30mm; background-color: #fef">

5. Barcodes and matrix codes in pdfChip 5.3 How to define the size of barcode objects 160

callas pdfChip

 <object type="application/barcode" style="background-color: #eff;">
 <param name="data" value="123456789012">
 <param name="type" value="EAN 13">
 <param name="modulewidth" value="0.33mm"> <param name="modulewidth" value="0.33mm">
 <param name="barwidthreduction" value="10%">
 <param name="quietzoneleft" value="10">
 <param name="quietzoneright" value="10">
 <param name="quietzoneunit" val-
ue="X">
 </object>
 </div>

The example below shows the effect of the methods de-
scribed above. An HTML file with the examples is attached
below the figure.

 defining_size_of_barcode.html

5. Barcodes and matrix codes in pdfChip 5.3 How to define the size of barcode objects 161

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/000/201/913/original/defining_size_of_barcode.html

5.4 How to define barcode objects in
HTML and SVG
Barcodes and matrix codes are created through "barcode ob-
jects", which are a pdfChip specific custom type of <object>.

Such objects can be used in HTML content, inside SVG ob-
jects and inside SVG files (as of pdfChip 1.2, SVG files can be
converted directly to PDF, without having to embed them in
HTML).

Please note that when viewing an HTML file or an SVG file
which contain a pdfChip barcode object, the browser will typ-
ically show a "missing plug-in" sign where the barcode or
matrix code would be present, as pdfChip barcode objects
are only supported for processing by pdfChip.

Defining a barcode object in HTML

An example for the syntax of a barcode object inside HTML is
shown below.

Please note that the background-color and color attributes
are used for demonstration purposes only. Normally bar-
codes and matrix codes would be printed in black (or a very
dark color) on white (or a very light background).

Example

The example code below – which can also be found in the
downladable HTML file "Data_Matrix_code_defined_in-
side_HTML.html" – creates a DataMatrix code by means of a
barcode object inside HTML. The output is also shown below
(the background color "pink" is only used for demonstration
purposes. Normally using a white background is preferred).

<object xmlns="http://www.w3.org/1999/xhtml" <object xmlns="http://www.w3.org/1999/xhtml"
 type="application/barcode" type="application/barcode"
 style="margin: 0; padding: 0; background-color:pink; color: style="margin: 0; padding: 0; background-color:pink; color:
green;"> green;">
 <param name="type" value="Data Matrix"> <param name="type" value="Data Matrix">
 <param id="data" name="data" value="This Data Matrix code was created <param id="data" name="data" value="This Data Matrix code was created

5. Barcodes and matrix codes in pdfChip 5.4 How to define barcode objects in HTML and SVG 162

callas pdfChip

through a barcode object inside HTML"> through a barcode object inside HTML">
 <param name="modulewidth" value="2mm"> <param name="modulewidth" value="2mm">
 <param name="quietzoneleft" value="1"> <param name="quietzoneleft" value="1">
 <param name="quietzoneright" value="1"> <param name="quietzoneright" value="1">
 <param name="quietzonetop" value="1"> <param name="quietzonetop" value="1">
 <param name="quietzonebottom" value="1"> <param name="quietzonebottom" value="1">
 <param name="quietzoneunit" value="X"> <param name="quietzoneunit" value="X">
</object> </object>

Defining a barcode object inside an SVG object

An example for the syntax of a barcode object inside an SVG
object inside HTML is shown below.

Please note that the background-color and color attributes
are used for demonstration purposes only. Normally bar-
codes and matrix codes would be printed in black (or a very
dark color) on white (or a very light background).

 Data_Matrix_code_defined_inside_HTML.html

5. Barcodes and matrix codes in pdfChip 5.4 How to define barcode objects in HTML and SVG 163

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/000/202/027/original/Data_Matrix_code_defined_inside_HTML.html

Example

The example code below – which can also be found in the
downladable HTML file "Data_Matrix_code_defined_in-
side_SVG_object.html" – creates a DataMatrix code by means
of a barcode object inside SVG which in turn is contained as
an SVG object inside HTML. The output is also shown below
(the background color "pink" is only used for demonstration
purposes. Normally using a white background is preferred).

<h1>Data Matrix code defined inside SVG object</h1>
<svg width="250mm" height="150mm" xmlns="http://www.w3.org/2000/svg">
 <rect x="5mm" y="10mm" width="240mm" height="130mm" stroke="blue" fill="yellow">
 </rect>
 <foreignObjectforeignObject x="25mm" y="20mm" width="120mm" height="120mm">
 <object xmlns="http://www.w3.org/1999/xhtml" <object xmlns="http://www.w3.org/1999/xhtml"
 type="application/barcode" type="application/barcode"
 style="margin: 0; padding: 0; background-color:pink; color: style="margin: 0; padding: 0; background-color:pink; color:
green;"> green;">
 <param name="type" value="Data Matrix"> <param name="type" value="Data Matrix">
 <param id="data" name="data" value="This Data Matrix code <param id="data" name="data" value="This Data Matrix code
was created through SVG"> was created through SVG">
 <param name="modulewidth" value="2mm"> <param name="modulewidth" value="2mm">
 <param name="quietzoneleft" value="1"> <param name="quietzoneleft" value="1">
 <param name="quietzoneright" value="1"> <param name="quietzoneright" value="1">
 <param name="quietzonetop" value="1"> <param name="quietzonetop" value="1">
 <param name="quietzonebottom" value="1"> <param name="quietzonebottom" value="1">
 <param name="quietzoneunit" value="X"> <param name="quietzoneunit" value="X">
 </object> </object>
 </foreignObjectforeignObject>
</svg>

 Data_Matrix_code_defined_inside_SVG_object.html

5. Barcodes and matrix codes in pdfChip 5.4 How to define barcode objects in HTML and SVG 164

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/000/202/028/original/Data_Matrix_code_defined_inside_SVG_object.html

Defining a barcode object inside an SVG file

An example for the syntax of a barcode object inside an SVG
file – which can be processed directly by pdfChip – is shown
below.

Please note that the background-color and color attributes
are used for demonstration purposes only. Normally bar-
codes and matrix codes would be printed in black (or a very
dark color) on white (or a very light background).

Example

The example code below – which can also be found in the
downladable SVG file "Data_Matrix_code_defined_in-
side_SVG_file.svg" – creates a DataMatrix code by means of a
barcode object inside an SVG file. The output is also shown
below (the background color "pink" is only used for demon-
stration purposes. Normally using a white background is pre-
ferred).

5. Barcodes and matrix codes in pdfChip 5.4 How to define barcode objects in HTML and SVG 165

callas pdfChip

<?xml version="1.0" encoding="utf-8"?>
<svg version="1.1"
 xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"
 width="250mm" height="150mm">
 <style type="text/css">
 @page {
 /* Size of the page, equivalent to MediaBox, origin always
at 0/0 */
 size: 307mm 310mm; /* slightly larger than target format */
 -cchip-cropbox: 0mm 100mm 297mm 210mm;
 /* crops @page-size (MediaBox) to the actually
 intended page size for display and printing */
 }
 </style>
 <defs> </defs>
 <rect x="5mm" y="10mm" width="240mm" height="130mm" stroke="blue"
fill="yellow">
 </rect>
 <foreignObject x="25mm" y="20mm" width="80mm" height="60mm">
 <object xmlns="http://www.w3.org/1999/xhtml" <object xmlns="http://www.w3.org/1999/xhtml"
 type="application/barcode" type="application/barcode"
 style="margin: 0; padding: 0; background-colstyle="margin: 0; padding: 0; background-col--
or:pink; color: green;"> or:pink; color: green;">
 <param name="type" value="Data Matrix"> <param name="type" value="Data Matrix">
</param> </param>
 <param name="data" value="Created from SVG file."> </param> <param name="data" value="Created from SVG file."> </param>
 <param name="modulewidth" value="1mm"> <param name="modulewidth" value="1mm">
</param> </param>
 <param name="quietzoneleft" value="1"> <param name="quietzoneleft" value="1">
</param> </param>
 <param name="quietzoneright" value="1"> <param name="quietzoneright" value="1">
</param> </param>
 <param name="quietzonetop" value="1"> <param name="quietzonetop" value="1">
 </param> </param>
 <param name="quietzonebottom" value="1"> <param name="quietzonebottom" value="1">
</param> </param>
 <param name="quietzoneunit" value="X"> <param name="quietzoneunit" value="X">
 </param> </param>
 </object> </object>
 </foreignObject>
</svg>

5. Barcodes and matrix codes in pdfChip 5.4 How to define barcode objects in HTML and SVG 166

callas pdfChip

 Data_Matrix_code_defined_inside_SVG_file_v2.svg

5. Barcodes and matrix codes in pdfChip 5.4 How to define barcode objects in HTML and SVG 167

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/003/727/859/original/Data_Matrix_code_defined_inside_SVG_file_v2.svg

5.5 How to create and update bar-
code objects dynamically
As barcode objects are custom objects implemented by
pdfChip, and are not regular parts of the DOM, when dynami-
cally creating or updating barcode objects, it is necessary to
force an update of a barcode object after it has been created
or modified. The method to enforce such updating is surpris-
ingly simple: the (modified) barcode is virtually assigned to
itself...

The example illustrated in this article explains how this can
be achieved, by means of a simple HTML file, with some
JavaScript included in its <head> tag, that creates several
pages, each with on QR-Code on it, and the text that has
been encoded in the QR-Code in plain text below the QR-
Code.

 <body style="padding: 20mm; ">
 <p>Dynamically creating/updating a QR-Code
(requires use of
cchipPrintLoop() / JavaScript)<p>
 <object id='id_barcode' type='application/barcode'>
 <param name='type' value='QR-Code'/>
 <!-- the 'data' entry wil be dynamically populated by the
JavaScript above -->
 <param id='id_barcodedata' name='data' value='Hello <param id='id_barcodedata' name='data' value='Hello
World!' /> World!' />
 <param name='modulewidth' value='2mm'>
 <param name="quietzoneleft" value="1">
 <param name="quietzoneright" value="1">
 <param name="quietzonetop" value="1">
 <param name="quietzonebottom" value="1">
 <param name="quietzoneunit" value="X">
 </object>
 <p id="id_barcodecontent" style="color: #888">placeholder for the <p id="id_barcodecontent" style="color: #888">placeholder for the
data encoded in the QR-Code</p> data encoded in the QR-Code</p>
 </body>

Two parts of the content shown above (in dark blue bolded
text) are filled repeatedly by the JavaScript below.

5. Barcodes and matrix codes in pdfChip 5.5 How to create and update barcode objects dynamically 168

callas pdfChip

• first, the parameter "daat" inside the barcode object
(identified by "id_barcodedata") is set to the new value
(taken from an array of values)

• next, an update is forced by assigning the modified set of
parameters to the barcode object (essentially simply by
setting "b.innerHTML = b.innerHTML")

• last but not least, the text below the QR-Code, identified
by "id_barcodecontent" is also modified; a forced update
is not necessary, as the <p> tag and its content are regular
parts of the DOM – any changes to it take effect immedi-
ately.

 <script>
 // the data variable contains the entries to be used for
dynamically populating teh QR-Codes
 var data =
 [
 { data: "Wir heissen Sie sehr herzlich willkom-
men in der wunderbaren Welt von callas pdfChip!" }
 , { data: "We welcome you very warmly in the won-
derful world of callas pdfChip!" }
 , { data: "Nous vous accueillons chaleureusement
la bienvenue dans le monde merveilleux de callas pdfChip!" }
 , { data: "Wij heten u van harte welkom in de won-
dere wereld van callas pdfChip!" }
 , { data: "Vi diamo il benvenuto caloroso benvenu-
to al meraviglioso mondo della Callas pdfChip!"}
 , { data: "Nós recebê-lo calorosamente bem-vindos
ao maravilhoso mundo dos callas pdfChip!"}
 , { data: "Le damos la bienvenida con gusto la bi-
envenida al maravilloso mundo de las calas pdfChip!"}
];
 // - sets new value for the QR Code data
 // - forces an update by inserting the parameter entries -
 i.e. the children
 // of the barcode object - into the barcode object itself
 function setBarcode(d) {
 document.getElementById('id_barcodedata').setAt-
tribute('value',d.data);
 //force update for parameters of the barcode ob-
ject:
 var b = document.getElementById('id_barcode');
 b.innerHTML = b.innerHTML;
 // also set the text below the QR-Code to the same

5. Barcodes and matrix codes in pdfChip 5.5 How to create and update barcode objects dynamically 169

callas pdfChip

value
 var p = document.getElementById('id_barcodecon-
tent');
 p.innerHTML = d.data;
 }

 function printRemainingBarcodes(i) {
 cchip.printPages(1);

 if (++i < data.length) {
 setBarcode(data[i]);
 cchip.onPrintReady(() => { printRemaining-
Barcodes(i); });
 }
 }

 // cchipPrintLoop() is a pdfChip specific function that
makes it possible to dynamically generate pages
 function cchipPrintLoop(){
 setBarcode(data[0]);
 cchip.onPrintReady(() => { printRemainingBar-
codes(0); });
 }
 </script>

Seven pages are created by the sample HTML file provided at
the bottom of this article:

5. Barcodes and matrix codes in pdfChip 5.5 How to create and update barcode objects dynamically 170

callas pdfChip

The contents of one of the generated pages / QR-Codes:

An example HTML file is provided below for download:

 update_barcode_objects_dynamically.html.zip

5. Barcodes and matrix codes in pdfChip 5.5 How to create and update barcode objects dynamically 171

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/008/645/467/original/update_barcode_objects_dynamically.html.zip

5.6 Using gradient or image as "col-
or" for QR code
Using the "swap_foreground_background" parameter for a
barcode object, it is possible to apply arbitrary visual content
as the "color" for a barcode or matrix code. "swap_fore-
ground_background" essentiallly swaps the foreground (CSS
"color" property) and the background (CSS "background"
property) color. While in CSS for the foreground color only
regular or custom pdfChip color definitions can be used, the
possibilities for "background" are much richer. Here it is pos-
sible to define gradients or images.

The following is just one example of taking advantage of the
"swap_foreground_background" parameter. The HTML
source file can be found for download at the bottom of this
article.

Regular "black on white" QR Code

 <object class="barcode_object"
 type="application/barcode"
 style = "
 color: black;
 background-color: #ddd;
 "
 >
 <param name="type" value="QR-Code">
 <param name="modulewidth" value="1mm">
 <param name="data" value="www.callassoftware.com">
 <param name="quietzoneleft" value="1">
 <param name="quietzoneright" value="1">
 <param name="quietzonetop" value="1">
 <param name="quietzonebottom" value="1">
 <param name="quietzoneunit" value="X">
 </object>

5. Barcodes and matrix codes in pdfChip 5.6 Using gradient or image as "color" for QR code 172

callas pdfChip

Defining a gradient as the "color" for a QR Code

 <p>
 <object class="barcode_object"
 type="application/barcode"
 style = "
 color: #ddd;
 background: linear-gradient(135deg, firebackground: linear-gradient(135deg, fire--
brick, brick,
 red, orange, orange, green, blue, red, orange, orange, green, blue,
indigo, violet); indigo, violet);
 "
 >
 <param name="type" value="QR-Code">
 <param name="modulewidth" value="1mm">
 <param name="data" value="www.callassoftware.com">
 <param name="swap_foreground_background" valparam name="swap_foreground_background" val--
ue="true">ue="true"> <param name="quietzoneleft" value="1">
 <param name="quietzoneright" value="1">
 <param name="quietzonetop" value="1">
 <param name="quietzonebottom" value="1">
 <param name="quietzoneunit" value="X">
 </object>
 </p>

Defining an image as the "color" for a QR Code

 <object class="barcode_object"
 type="application/barcode"
 style = "
 color: #ddd;
 background: url('img/wood.jpg') ; background: url('img/wood.jpg') ;
 background-size: 96pt 96pt; background-size: 96pt 96pt;
 "
 >
 <param name="type" value="QR-Code">
 <param name="modulewidth" value="1mm">
 <param name="data" value="www.callassoftware.com">
 <param name="swap_foreground_background" value="true"> <param name="swap_foreground_background" value="true">

5. Barcodes and matrix codes in pdfChip 5.6 Using gradient or image as "color" for QR code 173

callas pdfChip

 <param name="quietzoneleft" value="1">
 <param name="quietzoneright" value="1">
 <param name="quietzonetop" value="1">
 <param name="quietzonebottom" value="1">
 <param name="quietzoneunit" value="X">
 </object>

Defining an image based pattern as the "color"
for cells in a QR Code

 <object class="barcode_object"
 type="application/barcode"
 style = "
 color: #ddd;
 background: url('img/icon_pdfchip.svg') ; background: url('img/icon_pdfchip.svg') ;
 background-size: 6pt 6pt; background-size: 6pt 6pt;
 background-repeat: repeat; background-repeat: repeat;
 "
 >
 <param name="type" value="QR-Code">
 <param name="modulewidth" value="6pt">
 <param name="data" value="www.callassoftware.com">
 <param name="swap_foreground_background" value="true">
 <param name="quietzoneleft" value="1">
 <param name="quietzoneright" value="1">
 <param name="quietzonetop" value="1">
 <param name="quietzonebottom" value="1">
 <param name="quietzoneunit" value="X">
 </object>

5. Barcodes and matrix codes in pdfChip 5.6 Using gradient or image as "color" for QR code 174

callas pdfChip

5. Barcodes and matrix codes in pdfChip 5.6 Using gradient or image as "color" for QR code 175

callas pdfChip

For the HTML source code please download the ZIP file be-
low:

 Using_gradient_or_image_as_"color"_for_QR_co-2.zip

5. Barcodes and matrix codes in pdfChip 5.6 Using gradient or image as "color" for QR code 176

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/000/203/753/original/Using_gradient_or_image_as_%22color%22_for_QR_co-2.zip

5.7 Adjust page size for result PDF to
size of placed PDF
Sometimes the dimensions of the result PDF have to be ad-
justed to an object. This, for instance, is required when the
purpose is to create variants from an input PDF where each
of the variants has some additional content. In this article we
describe how to create variants from an incoming PDF where
each variant has an individual QR code. The trick is how to
adjust the size of the result PDF variants to the size of the in-
coming PDF.

The example archive has just 4 files:

• input.pdfinput.pdf is the placed PDF and can be replaced with any
other PDF

• index.htmindex.html is a very small HTML template
• params.jsparams.js defines some static parameters for the QR code

and the total number of pages
• qrcode.jsqrcode.js has the logic that adjusts the page size, places

the QR codes and creates pages

index.html

The HTML template is very simple.

 Adjust_size_to_placed_PDF.zip

5. Barcodes and matrix codes in pdfChip 5.7 Adjust page size for result PDF to size of placed PDF 177

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/002/043/888/original/Adjust_size_to_placed_PDF.zip

1. Two JavaScript files are referenced
2. The PDF file is placed
3. A DIV container is created for the QR code

params.js

The params.js JavaScript just has a few parameters for the
QR code. It can be overwritten for every job if needed and
that is the reason why it is separate from the other
JavaScript.

1. jobID, customerID and addvalues are static values that
are the same for all pages of the result PDF

2. numberofpages defines the required number of different
page variants form the input PDF

qrcode.js

This JavaScript file has all logic of this example. It consists of
two functions.

5. Barcodes and matrix codes in pdfChip 5.7 Adjust page size for result PDF to size of placed PDF 178

callas pdfChip

The first function "adjustDocumentSizeToHtmlElement" ad-
justs the size of the HTML template to the size of the placed
PDF

1. The placed PDF was contained in an img tag with the id
"inputPDF". This will be used when adjustDocumentSize-
ToHtmlElement is called as the "inElementID".
The dimensions of this object are determined and written
into two varialbes.

2. A margin is defined to use --cchip-cropbox to make the re-
sult page 500pt bigger than the required size and to then
crop it to that required size.

3. A style element for the page size @page is created and
appended and the required size is written into this @page
element. In addition the --cchip-cropbox is defined.

5. Barcodes and matrix codes in pdfChip 5.7 Adjust page size for result PDF to size of placed PDF 179

callas pdfChip

The second function is the cchipPrintLoop function that al-
lows for creating pages. In this function:

1. The first function adjustDocumentSizeToHtmlElement is
called with "inputPDF" as parameter (that defines the ob-
ject from which the page size has to be derived as de-
scribed above).

2. A loop is started for the number of required page variants
3. The QR code value is concatenated from the static values

in params.js and the counter that is individual for each
page variant. In this example the counter is just made
part of the QR code value.

4. The QR code object is created and written into the HTML
object with id "QR_Code".

5. A page is created via cchip.printPages.

5. Barcodes and matrix codes in pdfChip 5.7 Adjust page size for result PDF to size of placed PDF 180

callas pdfChip

5.8 How to create rectangular 16x48
DataMatrix Industry code
pdfChip supports over 100 symbologies (types of barcodes
and matrix codes). In addition, a set of about 100 specific
barcode object parameters – plus the extra list of special op-
tions in the "options" parameter – make it possible to create
many more specialized subtypes of barcodes.

This article illustrates how to create a DataMatrix code of
type "Industry", with a rectangular size of "16x48" cells.

The special parameters necessary to create a DataMatrix
code of type "Industry" with a rectangular size of 16x48 cells
are:

• dm_formatdm_format: defines "Industry" as the format to be used
here

• dm_sizedm_size: sets the desired size, in this case 16 by 48 cells
• dm_rectangulardm_rectangular: sets the form of the DataMatrix code to

be rectangular

 <object type="application/barcode" >
 <param name="type" value="Data Matrix"> <param name="type" value="Data Matrix">
 <param name="data" value="Put actual data here">
 <param name="modulewidth" value="0.25577mm">
 <param name="dm_format" value="Industry"> <param name="dm_format" value="Industry">
 <param name="dm_size" value="16x48"> <param name="dm_size" value="16x48">
 <param name="dm_rectangular" value="true"> <param name="dm_rectangular" value="true">
 </object>

Note: The actual xqsize in this case is very small (ca. 12mm x
4mm).

5. Barcodes and matrix codes in pdfChip 5.8 How to create rectangular 16x48 DataMatrix Industry code 181

callas pdfChip

The attachment below contains an HTML source file for this
rectangular DataMatrix Industry code.

 DataMatrix_Industry__rectangular__16x48.html

5. Barcodes and matrix codes in pdfChip 5.8 How to create rectangular 16x48 DataMatrix Industry code 182

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/000/203/535/original/DataMatrix_Industry__rectangular__16x48.html

5.9 How to create ITF-14 barcode
with bearer bars
The ITF-14 barcode is one of the very few barcodes for which
use of so called bearer bars are defined.

Normally, bearer bars are only created at the top and the bot-
tom of a barcode. In cases where bearer bars are created on
all four sides, it is important to provide space for the bearer
bars to the left and to the right of the barcode in the form of a
properly sized quiet zones. Using a value of zero for the quiet
zone will lead to an error when creating a barcode.

An HTML file with the code used for this example is available
for download:

Relevant HTML source code for the barcode object:

 <object type="application/barcode" style="height: 0.5in">
 <param name="type" value="ITF 14 (GTIN 14)">
 <param name="modulewidth" value="0.254mm">
 <param name="data" id="id_barcodevalue" value="00614141999996">
 <param name="quietzoneleft" value="1">
 <param name="quietzoneright" value="1">
 <param name="quietzoneunit" value="in">
 <param name="bearerbars"<param name="bearerbars" value="topbottom"> value="topbottom">
 <param name="bearerwidth"<param name="bearerwidth" value="0.01in"> value="0.01in">
 </object>

 ITF-14_with_bearer_bars-1.html

5. Barcodes and matrix codes in pdfChip 5.9 How to create ITF-14 barcode with bearer bars 183

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/000/206/411/original/ITF-14_with_bearer_bars-1.html

PDF output from example file

5. Barcodes and matrix codes in pdfChip 5.9 How to create ITF-14 barcode with bearer bars 184

callas pdfChip

6. Export InDesign files in-
to HTML/CSS templates

6. Export InDesign files into HTML/CSS templates 185

callas pdfChip

6.1 Overview and installation

Beginning with version 1.2 pdfChip comes with an
Adobe InDesign export filter that allows users to create
their templates in InDesign. InDesign is the most com-
monly used layout tool with many features for the cre-
ation of print content.

It is easily possible to export an InDesign file to HTML
with InDesign itself, however, this export will create
rather big and unstructured files with various elements
that are not required if the HTML is going to be con-
verted to PDF. In addition it lacks of support for the
pdfChip specific contents, e.g. of CMYK or ICCbased col-
ors.

The export2pdfChip export filter will:

• export all fonts that are used in the InDesign file in-
to the HTML template (TrueType and OpenType are
supported),

• create CSS colors for all InDesign color swatches
that are used in the InDesignFile (including CMYK);
for color spaces that are not supported in HTML it
will in addition create an alternate color that will
be used by an HTML renderer, e.g. a web browser,

• create @page rule entries for the page geometry of
the InDesign file including TrimBox and BleedBox,
when the HTML is converted to PDF the result will
have as many pages as the InDesign file

• will take over most important text formatting rules
from Paragraph and Character Styles,

• create some basic vector objects from any such ob-
jects in the InDesign file.

The main purpose of the export filter is to make it pos-
sible to use the layout features of InDesign for the cre-
ation of HTML templates for pdfChip, the main purpose
is not to create an as good as possible HTML rendition
from any InDesign file.

6. Export InDesign files into HTML/CSS templates 6.1 Overview and installation 186

callas pdfChip

Installation

Open the Scripts Utilities in Indesign

For installation in InDesign go to Window, Utilities and select
Scripts. This will open the Scripts palette.

6. Export InDesign files into HTML/CSS templates 6.1 Overview and installation 187

callas pdfChip

Scripts palette

The Scripts palette shows scripts that are available for the
user or for the application (all users on the computer). Pick
the one that is appropriate in your case and open the options
menu and select "Reveal in Finder".

Install the export filter

Install the script by copying all content from the pdfChip pro-
gram folder "additional tools/InDesign to HTML export" into
the Scripts Panel folder in the Scripts folder.

6. Export InDesign files into HTML/CSS templates 6.1 Overview and installation 188

callas pdfChip

The script and a "js" folder are now listed in the
Scripts palette

The script "export2pdfChip.jsx" is the actual export script. It
can be used by double clicking it there in the Scripts palette.

6. Export InDesign files into HTML/CSS templates 6.1 Overview and installation 189

callas pdfChip

6.2 How does the export filter work?

In order for an InDesign file to be properly exported all
text should be formatted using paragraph or character
styles. Only then it is possible to translate all format-
ting into CSS that is used for formatting HTML.

There is a helper script "AutoCreate_Paragraph-
Styles.jsx" that allows you to automatically convert all
custom text formatting or character styles into para-
graph styles in InDesign. However, if you want to be in
control of what shows up in CSS styles in your HTML
template you will have do that your self.

Exporting InDesign into pdfChip templates

The InDesign export filter is started by double clicking it in
the Scripts palette in InDesign. It creates a new folder next to
the InDesign file with the name: <InDesign file
name>"_htmlOut". If there is already a folder with this name
an error message is displayed before it is overwritten. The
new folder has the index.html template and further content
in subfolders that it references:

• fonts
• images
• js
• styles

A few files are always created by the export filter: The in-
dex.html template itself and a corresponding CSS file: styles/
style.css. The js folder contains the Hypenator JavaScript li-
brary that is by default used for all exported text to make
sure that it is hyphenated.

Basically all text and vector elements will go into the in-
dex.html and the style.css has all formatting: text sizes, posi-
tioning, colors, images, fonts etc. etc. This will, however, for
text only work if it`s formatting uses InDesign paragraph
stylesheets and not "custom formatting". See "Auto convert
custom formatting or character styles into paragraph styles"
how you can do that.

6. Export InDesign files into HTML/CSS templates 6.2 How does the export filter work? 190

callas pdfChip

The fonts folder has all fonts that have been used in the InDe-
sign file. Currently TrueType and OpenType fonts are sup-
ported, since only those work safely in pdfChip. If other font
formats are used in the InDesign file an message shows up
during export. For each font a @font-face entry is created in
styles/style.css.

The images folder has copies of all images that are refer-
enced from the InDesign file. The images in this folder are
now referenced from styles/style.css. This works for properly
for jpg, png or other formats that are supported in HTML. If
an image e.g. uses TIFF the HTML will have a broken link (and
the PDF created from it will be empty).

Multi page files

The HTML template will consist of a single HTML "page" even
if you have several pages in your InDesign file. But this single
page will have all content of all InDesign pages. The CSS page
size definitions will make sure that when pdfChip converts
this template into a PDF file that you will have as many PDF
pages as your original InDesign file had.

Auto convert text using custom formatting or
character styles into paragraph styles

In order to properly convert text formatting all such format-
ting should take place using either paragraph or character
styles in InDesign. The helper script "AutoCreate_Paragraph-
Styles" creates a generic paragraph style for each text that is
not already assigned to such a style. The generic paragraph
styles gets the name "AutoStyle"<No>, where <No> is a num-
ber.

If there already is a paragraph style with the name, an error
message appears. This will e.g. usually be the case when you
would run the script twice on the same InDesign file. If you
need to do that because you have inserted new text, you will
have to rename as many existing paragraph styles beginning
with AutoStyle as you need for the new text.

6. Export InDesign files into HTML/CSS templates 6.2 How does the export filter work? 191

callas pdfChip

Hyphenation

If you are using text boxes in InDesign all text will automati-
cally be hyphenated. Only if you have disabled hyphenation
in the respective Paragraph Style in InDesign this will not be
the case in the result HTML and PDF.

The language settings from InDesign Paragraph Styles are al-
so taken over, so if you are marking a paragraph as English
and another as German, these settings will be taken over into
the HTML template. This does, however, not work for lan-
guage settings in Character Styles.

In order to achieve that the InDesign Export automatically in-
serts and activates a JavaScript library "Hyphenator" into
each HTML template that it creates.

Further information about this great library that has been
written by Mathias Nater, Zürich (mathiasnater at gmail dot
com) is available via this link: https://github.com/mnater/Hy-
phenator.

Hyphenation results may differ from the results of InDesign
since both engines are using different dictionaries and rules.

6. Export InDesign files into HTML/CSS templates 6.2 How does the export filter work? 192

callas pdfChip

https://github.com/mnater/Hyphenator
https://github.com/mnater/Hyphenator

6.3 Create a simple HTML template

The InDesign Ticket Example

Attached is an InDesign file as an example for a Ticket.

The InDesign Tickt Example has some text using a free font
"Free Universal", some images and a color bar at the bottom
in a spot color. All other colors are defined in CMYK.

You should download unpack and open the file in order to
follow the steps of this article.

 InDesign2HTML4pdfChip_1_Ticket.zip

6. Export InDesign files into HTML/CSS templates 6.3 Create a simple HTML template 193

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/000/224/946/original/InDesign2HTML4pdfChip_1_Ticket.zip

Export the InDesign file into a pdfChip HTML
template using the Scripts palette

The "export2pdfChip.jsx" script will create a
folder next to the InDesign file

6. Export InDesign files into HTML/CSS templates 6.3 Create a simple HTML template 194

callas pdfChip

This new folder contains the new HTML template for pdfChip.

In order to create a PDF file from it you can now convert it
with pdfChip (on command line or integrated into your envi-
ronment or by using an editor with a build interface like Sub-
lime).

You may now open the result in pdfToolbox or
any other PDF viewer

If you then analyse the PDF, e.g. with pdfToolbox' "List page
objects by type of object" profile, you will see that the export
has accurately taken all CMYK colors, fonts, images etc. into
the HTML template from where pdfChip has then created a
printable PDF file:

6. Export InDesign files into HTML/CSS templates 6.3 Create a simple HTML template 195

callas pdfChip

Fonts are embedded, vector graphics are using CMYK or spot
color and images are using ICCbased CMYK.

6. Export InDesign files into HTML/CSS templates 6.3 Create a simple HTML template 196

callas pdfChip

6.4 Create an HTML template that
can be used for "mail merge" style
multi-page PDF generation
In this article we are using the same InDesign file that is used
in "Create a simple HTML template".

Marking variable text in InDesign

Since the export filter uses CSS IDs and Classes for all objects
that it creates and since you can modify or replace any object
in a HTML template that can be identified by means of such
an ID or a Class you can basically modify everything in the
HTML template for individualisation. However, this would be
difficult to maintain, because if you would create a new ob-
ject in a later version of your InDesign file the export script
may change the order in the CSS so that all objects will get
different names and you would have to modify your
JavaScript.

Therefore it is much better to use a persistent identification
means which can be found in the InDesign "Script Labels".
Script Labels are text strings that are translated by the export
script into CSS classes. These classes can then be used in the
JavaScript to identify the variable objects and to replace or
modify them during PDF page creation in pdfChip. These
Script Labels will alway be assigned to "their" objects what-
ever you do with the rest of the InDesign file.

The "Script Label" palette in InDesign is usually next to the
Scripts palette in the same window.

 InDesign2HTML4pdfChip_Ticket-1.zip

6. Export InDesign files into HTML/CSS templates 6.4 Create an HTML template that can be used for "mail merge" style multi-page
PDF generation

197

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/000/224/947/original/InDesign2HTML4pdfChip_Ticket-1.zip

If you select the name in the Ticket example you will see that
it has the Script Label "attendeename". Similarily the violet
boxes below the pdfChip icon have "Barcode" and
"QR_Code".

In addition we want to print the current number on each of
the individual tickets. Therefore the InDesign file has a text
"No 100 of 500" where 100 and 500 are obviously placehold-
ers for the actual numbers. Since these are only part of the
same text it is not possible to assign them different Script La-
bels. You could now either modify the whole text or - as we
have done in this example - use a Character Style that is used
nowhere else in the document. We are using "NumberCount"
and "TotalCount".

6. Export InDesign files into HTML/CSS templates 6.4 Create an HTML template that can be used for "mail merge" style multi-page
PDF generation

198

callas pdfChip

Before we start the export...

The InDesign folder contains a subfolder "Resources". (If you
are using the download from the "Create a simple HTML tem-

6. Export InDesign files into HTML/CSS templates 6.4 Create an HTML template that can be used for "mail merge" style multi-page
PDF generation

199

callas pdfChip

plate" example it will have "Resources.off" instead. In that
case just remove the ".off".)

The export script will copy all contents from this folder into
the folder of the HTML template. In addition if the Resources
folder contains a "js" folder it will automatically create refer-
ences to the JavaScript files in this folder in the index.html
file that it creates.

So, if you create a JavaScript that creates individual in-
stances from your template you wil only have to put it into
this place in order to attach it to any HTML template that the
export script creates.

If you have exported the InDesign file before you will see a
message that the previous result will be overwrittten:

You may click "Yes" to confirm or rename the previous result
if you want to keep it.

6. Export InDesign files into HTML/CSS templates 6.4 Create an HTML template that can be used for "mail merge" style multi-page
PDF generation

200

callas pdfChip

The mail merge result

The js folder has the Hyphenator.js file and an atten-
dees100.js file. If you now convert the index.html into PDF us-
ing pdfChip you will create a 100 pages PDF file with individ-
ual tickets for exactly 100 names. Each page has a barcode
and a QR code that encodes the name of the ticket owner.
And finally each ticket says which number it is out of the 100
tickets that we have created.

How did that work?

As said before we are using CSS Classes and IDs to identify
objects in the HTML file.

6. Export InDesign files into HTML/CSS templates 6.4 Create an HTML template that can be used for "mail merge" style multi-page
PDF generation

201

callas pdfChip

Above entries are the ones for the QR Code, the Barcode and
the two entries for the numbers.

Further down in the not so long file you will see the entry for
the actual name. In fact this name will not occur on any of
the tickets that we have created. It is only a placeholder that
is being replaced by the names that are taken from the
JavaScript file.

6. Export InDesign files into HTML/CSS templates 6.4 Create an HTML template that can be used for "mail merge" style multi-page
PDF generation

202

callas pdfChip

The "attendees100.js" file

The JavaScript file starts with 100 name entries.

The names are followed by a single function "cchipPrint-
Loop". This is a basic pdfChip function that allows you to take
control of when a PDF page is created. You can now use
JavaScript within this loop to modify the internal representa-
tion of the HTML file, the DOM (Document Object Model) and
ask pdfChip to create a new page whenever you have done so
by using the cchip.printPages() call. Modifying the DOM with
JavaScript is standard web technology that is used on mil-
lions of web pages every second of the day.

6. Export InDesign files into HTML/CSS templates 6.4 Create an HTML template that can be used for "mail merge" style multi-page
PDF generation

203

callas pdfChip

Each of the calls beginning with "document.getElementsBy-
ClassName" identifies one of the objects using either the
Script Labels that we have used "attendeename", "Barcode"
and "QR_Code" or by using their Character Style names
"span_NumberCount" and "span_TotalCount" (or rather
what the export script has made of them by prefixing them
with span_).

The code that is put into the "innerHTML" of each of these
objects is HTML code into which the current object from the
list of names is placed to create individual tickets. For the
Barcode and the QR_Code again pdfChip specific code is
used. This is explained other parts of this pdfChip manual,
you should go there if you want to know more about that
part of the story.

6. Export InDesign files into HTML/CSS templates 6.4 Create an HTML template that can be used for "mail merge" style multi-page
PDF generation

204

callas pdfChip

6.5 Create an HTML template for in-
voices
This article explains a rather complex project that shows how
a HTML template for invoicing can be created in InDesign, ex-
ported into a pdfChip template using the export filter and
then turned into invoices.

Attached is an InDesign file as an example for an invoice. You
should download unpack and open the file in order to follow
the steps of this article.

This project is much more advanced than the other ones in
which the InDesign Export is explained. The reason is that in-
voices have rather difficult requirements:

• repeating fields for each of the line items on the invoice
• varying number of pages, depending on the number of

line items
• first, last and middle pages may have different layouts
• at the end of each page a subtotals block and at the end

of the invoice a totals block is required
• page breaks need to be determined based on the height

of all of the line items on the respective page minus the
height of the subtotals block

So, if you are not yet familiar with how the InDesign Export
works you should first read the other articles in this chapter.

As always when it is about creating various instances from a
template we need a data source that has the variable data. In
this example we are using XML files in the ZUGFeRD format.
(ZUGFeRD is a German standard for electronic invoices and a
ZUGFeRD invoice consists of a PDF/A-3 container into which
an XML invoice is embedded.) This example reads data from
such ZUGFeRD invoices, puts it into the corresponding ob-
jects in the template and creates a single PDF file for each in-
voice. Finally the XML is embedded into the PDF and the file
is saved according to the PDF/A-3 standard. So a full
ZUGFeRD invoice is created.

6. Export InDesign files into HTML/CSS templates 6.5 Create an HTML template for invoices 205

callas pdfChip

The InDesign file

The InDesign file uses layers and groups to mark content that
belongs to each other like the different kinds of data in a line.
Script Labels are used to mark objects so that a JavaScript
can then later pick up that information to modify the respec-
tive content. The file has three pages: First and last for the
corresponding pages of the PDF invoice and a middle page
that is the template for all other pages.

 pinqi_invoice_template.zip

6. Export InDesign files into HTML/CSS templates 6.5 Create an HTML template for invoices 206

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/000/331/139/original/pinqi_invoice_template.zip

HTML template created via the
export2pdfChip.jsx plug-in

All content from the Resources folder is copied into the tem-
plate and the index.html has references to all JavaScripts in
the js folder.

The invoices folder contains sample XML files for ZUGFeRD
invoices: A few examples from the ZUGFeRD standard specifi-
cation and a very long example with callas products on it.

6. Export InDesign files into HTML/CSS templates 6.5 Create an HTML template for invoices 207

callas pdfChip

If you want to modify any of the XML files or add new ones
you will have to also add them to the config.js file.

6. Export InDesign files into HTML/CSS templates 6.5 Create an HTML template for invoices 208

callas pdfChip

The invoice PDF files are as usual created by
processing the index.html with pdfChip

Each PDF has it's XML file embedded.

6. Export InDesign files into HTML/CSS templates 6.5 Create an HTML template for invoices 209

callas pdfChip

The invoice "invoice.callas.pdf" consists of 13 pages and the
first and last pages are different from each other and from all
middle pages as required in above "specification".

6. Export InDesign files into HTML/CSS templates 6.5 Create an HTML template for invoices 210

callas pdfChip

6.6 Autocreate Paragraph Styles
from custom styling
If you have an InDesign document that has lots of formatted
text but no Paragraph Styles it is sometimes cumbersome to
create those. However, if you want to use that document as
the basis for a pdfChip HTML template you would need Para-
graph Styles for all text formatting so that corresponding CSS
entries can be created from them.

This helper script allows you to automatically create Para-
graph Styles for all such text which is not already using Para-
graph Styles. It will create generic names for any new Para-
graph Styles: AutoStyle1, AutoStyle2, ... If the InDesign docu-
ment already has Paragraph Styles with these names an error
message will show up. That means, if you want to use it for a
document for which you have previously done that already,
you will have to either rename any such generic names or
delete them beforehand.

For installation in InDesign go to Window, Utilities and select
Scripts. This will open the Scripts palette.

The Scripts palette shows scripts that are available for the
user or for the application (all users on the computer). Pick
the one that is appropriate in your case and open the options
menu and select "Reveal in Finder". Then put the script into
that folder. After that it can be used by clicking it in the
Scripts palette.

 AutoCreate_ParagraphStyles.jsx

6. Export InDesign files into HTML/CSS templates 6.6 Autocreate Paragraph Styles from custom styling 211

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/000/235/433/original/AutoCreate_ParagraphStyles.jsx

7. Logging and debugging
techniques

7. Logging and debugging techniques 212

callas pdfChip

7.1 Extended logging capabilities: "--
dump-static-html" command line
parameter
A new command line parameter "--dump-static-html--dump-static-html" has
been introduced for pdfChip. It makes it possible to create
HTML files representing DOM snapshots – equivalent to what
pdfChip turns into PDF pages for each cchip.printPages() call.
If cchip.printPages() is not used, this parameter will create
one HTML file representing the DOM that is the basis for all
the PDF pages created.

The "--dump-static-html" command line
parameter

Command line argument.

--dump-static-html[=<folder name>]

If the --dump-static-html option is specified then the current
DOM state is written to an HTML file on each cchip.print-
Pages() call.

The parameter =<folder name> is optional and defaults to
dump-static-html. Its value is used as a prefix (to which a
time stamp will get appended) for the names of the folders
which contain the HTML file(s) with the dumped DOM.

Destination folder

The <folder name> parameter specifies a prefix for the name
(not the path!) of the destination folder.

The folder is always created in the same folder as the output
PDF file(s).

A time stamp is appended to destination folder name in the
following manner:

7. Logging and debugging techniques 7.1 Extended logging capabilities: "--dump-static-html" command line parameter213

callas pdfChip

<folder name>-yyyy-mm-dd—hh-mm-ss

Output file names format

Names of the HTML output files are constructed as follows:

“<html-file-name>-<num-html>-<pdf-file-name>-<num-pdf>.html”

where

• <num-html> is a counter for each occurrence of the
‘cchip.printPages’ call executed by the input HTML file
with the name <html-file-name>. The <num-html>
counter is reset to 0 for each input HTML file that is con-
verted - which will only happen if more than one input
HTML file has been passed to a pdfChip command line
call.

• <num-pdf> is a counter for of ‘cchip.printPages’ call
per output PDF, where that output PDF has the name
<pdf-file-name> . The <num-pdf> counter is re-

set to 0 for each output PDF file that gets created - which
will only happen if more in any of the input HTML files the
function cchip.setOutputPdf() is called to start
creating pages in a new PDF output file.

Example

For the following command line

pdfChip.exe --dump-static-html=dump index.html out.pdf

let “index.html” file contain two cchip.printPages() calls.
Then during processing by pdfChip on Septermber 23, 2016,
at 9:19:30 AM two static HTML files will get created in a folder
called dump-2016-09-23—09-19-30:

• “dump-2016-09-23—09-19-30/index-000-out-000.html”
• “dump-2016-09-23—09-19-30/index-001-out-001.html”

7. Logging and debugging techniques 7.1 Extended logging capabilities: "--dump-static-html" command line parameter214

callas pdfChip

7.2 Using "pdfChip Debug" browser
plug-in for interactive debugging
(1.2)
pdfChip Debug is a browser extension for Google Chrome
(supported on Mac OS X and Microsoft Windows). It emulates
almost all of pdfChip specific functionality, mostly functions
and data provided by the cchip.* object.

Without such emulation, it may be impossible or of limited
use to run and inspect an HTML file written specifically for
use of pdfChip features in a browser, as a browser will not
normally implement or otherwise provide functionality that
is specific to pdfChip.

This article describes how to install the pdfChip Debug
browser extension and how to make use of it.

 Security advice Security advice

In order for the pdfChip browser extension to work
the settings in the browser (Google Chrome) have
to be adjusted in a couple of way, in order for
pdfChip Debug to be able to do its work:

• enable Developer mode
• allow access to local files
• turn pdfChip Debug's active mode on

The first two increase the risk of «bad things hap-
pening» (i.e. all kinds of «cyber attacks»), especially
when opening or browsing files or URLs that you do
not know or that possibly can't or should not be
trusted. Thus, use these settings with caution! Thus, use these settings with caution!

Also, in order to make transparent what happens –
or could happen – when installing and using
pdfChip Debug, it is provided as an unpacked ex-
tension, so its source code is fully accessible.

It is recommended to disable Developer mode and
Access to local files when not doing development
work or when browsing the internet.

7. Logging and debugging techniques 7.2 Using "pdfChip Debug" browser plug-in for interactive debugging (1.2) 215

callas pdfChip

Installing pdfChip Debug

1. in Google Chrome, go to "Preferences"
2. switch to "Extensions" pane
3. locate and select "pdfChip Debug for Chrome" folder on

your file system
4. press "Select" button

By default, pdfChip Debug will now be enabledenabled and will have
access to the local file systemaccess to the local file system.

pdfChip debug can be disabled or removed from Google
Chrome at any time.

7. Logging and debugging techniques 7.2 Using "pdfChip Debug" browser plug-in for interactive debugging (1.2) 216

callas pdfChip

7. Logging and debugging techniques 7.2 Using "pdfChip Debug" browser plug-in for interactive debugging (1.2) 217

callas pdfChip

Activating pdfChip Debug

After installing pdfChip Debug, a pdfChip icon will be shown
in the Google Chrome toolbar.

In order to activate pdfChip Debug – such that its emulation
of pdfChip functionality actually kicks on – click in that icon,
and tick the checkbox in order to activate "debug trace log-
ging".

Do not forget to disable again once done inspecting and de-
bugging your pdfChip projects.

7. Logging and debugging techniques 7.2 Using "pdfChip Debug" browser plug-in for interactive debugging (1.2) 218

callas pdfChip

Initiate a debugging session

With a suitable HTML file loaded – whether from the local file
system or from a URL – simply launch the "Developer Tools"
in Google Chrome.

Google Chrome Developer Tools

The Google Chrome Developer Tools provide a convenient
and powerful environment for inspecting HTML projects. Due
to the pdfChip Debug provided emulation of pdfChip specific
functionality and data objects it is possible to step through
pdfChip specific JavaScript routines, set breakpoints, inspect
variables, or interact with the HTML project over the console.

7. Logging and debugging techniques 7.2 Using "pdfChip Debug" browser plug-in for interactive debugging (1.2) 219

callas pdfChip

7. Logging and debugging techniques 7.2 Using "pdfChip Debug" browser plug-in for interactive debugging (1.2) 220

callas pdfChip

Maximizing use of Google Chrome Developer
Tools for pdfChip projects

Google provides excellent resources about how to use their
Google Chrome Developer Tools – reading is absolutely rec-
ommend, simple check out:

https://developer.chrome.com/devtools https://developer.chrome.com/devtools

Start page of Google Chrome Developer Tools documentaGoogle Chrome Developer Tools documenta--
tiontion:

7. Logging and debugging techniques 7.2 Using "pdfChip Debug" browser plug-in for interactive debugging (1.2) 221

callas pdfChip

https://developer.chrome.com/devtools
https://developer.chrome.com/devtools
https://developer.chrome.com/devtools

8. Loading resources dy-
namically

8. Loading resources dynamically 222

callas pdfChip

8.1 Dynamically update barcodes (or
other HTML objects using parame-
ters)
Attached is a HTML template which is an example for a Tick-
et. The HTML loads a JavaScript that dynamically adds an
(attendee) name and updates the barcode objects (an object
using Code 128 and an QR code) to encode the name in the
DOM and writes a new page into the result PDF.

You should download unpack and open the attachment in or-
der to follow the steps of this article.

The JavaScript in the example modifies the barcode objects
in the DOM before it creates a new page. The problem with
that is that a modification of the parameters of an object
does internally not force the engine to update the whole
DOM. So, in order to enforce a DOM update that really reflects
the changes we need to take an additional action. This sim-
ply takes place by setting the updated DOM object to itself:

document.getElementById("bc1").innerHTML = document.getElementById("bc1").inner-
HTML;

Or with context:

function cchipPrintLoop() {
 for (var i = 0; i < attendees.length; i++) {
 document.getElementById("guest").innerHTML = attendees[i].Name;
 document.getElementById("barguest").value = attendees[i].Name;
 document.getElementById("qrguest").value = attendees[i].Name;
 // Resolve update problem: Re-assign barcode data in order to trig-
ger updates
 document.getElementById("bc1").innerHTML = document.getElement-
ById("bc1").innerHTML;
 document.getElementById("bc2").innerHTML = document.getElement-
ById("bc2").innerHTML;
 cchip.printPages();

 Tickets_Example_100.zip

8. Loading resources dynamically 8.1 Dynamically update barcodes (or other HTML objects using parameters) 223

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/000/210/123/original/Tickets_Example_100.zip

 };
};

In the cchipPrintLoop function for all attendee entries the
name on the PDF page is added and then the two barcode
objects, identified by their CSS-IDs "barguest" and "qrguest"
are modified. Then the enclosing CSS-IDs "bc1" and "bc2" are
updated with themselves in order to force the DOM to be up-
dated.

8. Loading resources dynamically 8.1 Dynamically update barcodes (or other HTML objects using parameters) 224

callas pdfChip

8.2 Dynamically update images
It is possible to dynamically update or add images to the
DOM via JavaScript. However, image loading takes place
asynchron from the rendering. This is usually not a problem
in a web browser, since it will just display images after they
have been loaded. But obviously this is indeed a problem in
pdfChip and therefore the JavaScript code has to make sure
that all images are loaded before the PDF page is created.

This article first describes a few approaches to overcome this
problem. The last download does in addition contain a utility
script "cchipUtils.js" that provides a convenient way to re-
solve this problem.

A way to resolve the problem of dynamic image loading is the
cchip.onPrintReady() function that is built into pdfChip.

The cchip.onPrintReady() function

cchip.onPrintReady(f) installs a callback function f() that is
called when the DOM is ready for printing, e.g. all images are
loaded. The normal way to use this function is to first manip-
ulate the DOM, then call cchip.onPrintReady(f) that calls f()
when the DOM is ready and exit the cchipPrintLoop(). The
function f() must call cchip.printPages() in order to actually
create PDF pages from the DOM and initiate further DOM ma-
nipulations and printing if required.

The following example illustrates how this function can be
used.

<html>
 <head>
 <script>
 function cchipPrintLoop(){
 var img = document.getElementById("myimg");
 img.src = "files/image.jpg";
 cchip.onPrintReady(cchip.printPages);
 }
 </script>
 </head>
 <body>

8. Loading resources dynamically 8.2 Dynamically update images 225

callas pdfChip

 </body>
</html>

The cchipPrintLoop() function is used to place an image (im-
age.jpg) into the DOM. Instead of directly calling cchip.print-
Pages it calls the cchip.onPrintReady function that installs
cchip.printPages as a callback function which makes sure
that it will only be used after all images have been loaded.

Dynamically load images

cchip.onPrintReady has, however, one severe problem: It
cannot be used in a loop, so that iterating over a number of
images would not work. Instead a more complex way has to
be used.

<html>
 <head>
 <script type="text/javascript">

 function setImage(i) {
 if (i != 1) {
 cchip.printPages()
 }
 if (i<9) {
 var img = document.getElementById("myimg");
 img.src = "files/" + i + ".png";
 cchip.onPrintReady(function () {setIm-
age(i+1)});
 }
 }
 function cchipPrintLoop() {
 setImage(1);
 }

 </script>
 </head>

 Single_image_load.zip

8. Loading resources dynamically 8.2 Dynamically update images 226

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/000/211/302/original/Single_image_load.zip

 <body>

 </body>
</html>

In this example the cchip.PrintLoop calls a setImage function
with a parameter 1. For this first time (i=1) cchip.printPages is
not called but the image object on the page is replaced with
1.png and then cchip.onPrintReady calls this function again
for the next page. Since cchip.onPrintReady waits until all im-
ages are loaded this will only take place after the image is in
the DOM and then cchip.printPages will be executed as the
first statement in the next setImage run.

Dynamically load images using an array

The previous example is not ideal because image names
need to have numbers to address them. The example below
uses an array instead that lists all image paths, so that im-
ages may have arbitrary names.

It is even possible to use this example and put arbitrary ob-
jects into the "data" array and they will be placed into the
corresponding CSS ID. Only the type of object identified by
the ID has to work with the entries of the data array; in this
example it has to be an image.

Dynamically load images using cchipUtils.js

This example uses a utility JavaScript that you may use in
your HTML instead. That allows you to get rid of the rather
complex code inside of your own JavaScript but to only refer-
ence the utility script instead. The utility script provides a

 Dynmically_load_images.zip

 Dynamically_load_images_from_an_array.zip

8. Loading resources dynamically 8.2 Dynamically update images 227

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/000/211/300/original/Dynmically_load_images.zip
https://media.screensteps.com/attachment_assets/assets/000/211/301/original/Dynamically_load_images_from_an_array.zip

function "cchip.modifyAndPrintDom" that can be used inside
of a cchipPrintLoop.

<html>
 <head>
 <script src="js/cchipUtils.js"></script>
 <script type="text/javascript">
 function setImageArg(urlString) {
 document.getElementById("myimg").src = urlString;
 }
 function cchipPrintLoop() {
 cchip.modifyAndPrintDom(setImageArg,
 ["files/icon_pdfchip_l_white.png"
 ,"files/icon_pdfchip_s.png"
 ,"files/icon_pdfchip.png"
 ,"files/icon_pdfchip_m.png"
 ,"files/icon_pdfchip_s_white.png"
 ,"files/icon_pdfchip_l_white.png"
 ,"files/icon_pdfchip_m_white.png"
 ,"files/icon_pdfchip_l.png"]);
 }
 </script>
 </head>
 <body >

 </body>
</html>

cchip.modifyAndPrintDom takes the name of a function that
modifies the DOM as it's first parameter and an array of ob-
jects as it's second parameter. The array of objects should
contain all objects that are to be feeded into the modifying
function for modifying the DOM. The modifying function, in
this example "setImageArg", has to have a parameter as
placeholder for the new content. The function will be called
for each item in the array with the respective item as parame-
ter.

The main purpose of cchip.modifyAndPrintDom is to make
sure that the DOM is fully updated with any modifications be-
fore it creates a PDF output from the current state of the
DOM.

8. Loading resources dynamically 8.2 Dynamically update images 228

callas pdfChip

 Dynamically_load_images_using_cchipUtils.zip

8. Loading resources dynamically 8.2 Dynamically update images 229

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/000/211/304/original/Dynamically_load_images_using_cchipUtils.zip

9. Optional content + Pro-
cessing steps in pdfChip

9. Optional content + Processing steps in pdfChip 230

callas pdfChip

9.1 Optional content (Layers) in
pdfChip
Specifying optional content (commonly named as "Layers")
in CSS is done in two steps:

1. define optional content rules, for optional content groups
(OCGs), optional content group nodes (OCG nodes) and/
or optional content membership dictionaries (OCMDs) by
using pdfChip specific syntax

2. set style attributes for HTML elements or through CSS
classes and IDs via names defined in the optional content
rules

A simple example is shown here:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <title> Optional content example </title>
 <style>
 @-cchip-pdf-ocg-node{
 -cchip-pdf-ocg-display-name: "Show/hide
paragraphs";
 -cchip-pdf-ocg-name: "paragraphs";
 }
 p {
 -cchip-pdf-ocg: 'paragraphs';
 }
 </style>
 </head>
 <body>
 <h1>This is a heading. </h1>
 <p>This is some text in a paragraph. It is only shown if visibili-
ty for the layer "Show/hide paragraphs" is turned on.
 </body>
</html>

In the attached ZIP archive two examples are included, one
very simple example, and a second example demonstrating
handling of OCGs in imported PDF pages. At least pdfChip 1.4

9. Optional content + Processing steps in pdfChip 9.1 Optional content (Layers) in pdfChip 231

callas pdfChip

(December 2017) is required to process the optional content
related features.

Optional content rules

Optional content groups: @-cchip-pdf-ocg

An optional content group rule establishes an optional con-
tent group (often referred to as layer).

@-cchip-pdf-ocg {
 /* attributes: */
 ...
}

The attributes shown in the table below are available to de-
fine properties of an optional content group:

Attribute Attribute

Matching optional Matching optional
content property content property
in PDF 1.7 (ISO in PDF 1.7 (ISO
32000-1) 32000-1)

Description Description

-cchip-pdf-ocg-
display-name

NameName entry in an Op-
tional Content Group
Dictionary (ISO
32000-1, Table 98)

(optional) a string providing the display name for the
OCG

-cchip-pdf-ocg-
name

no equivalent in PDF
syntax; only used for
associating styles
with OCG rules

(required) a string providing the name for the OCG to
be used in CSS style attributes

-cchip-pdf-ocg-
visibility

inserts reference to
the OCG in the ONON ar-
ray of the default Op-
tional Content Con-
figuration DIctionary
(OCCD) (ISO 32000-1,

(optional; default: on) a value setting the visibility of
the OCG; possible values are on and off; the default
value is on

 Optional_content_with_pdfChip_(2_examples).zip

9. Optional content + Processing steps in pdfChip 9.1 Optional content (Layers) in pdfChip 232

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/002/114/024/original/Optional_content_with_pdfChip_%282_examples%29.zip

AAttributttribute e

MatMatching optional ching optional
ccontontent prent property operty
in PDF 1.7 (ISO in PDF 1.7 (ISO
32000-1) 32000-1)

Description Description

Table 101)

-cchip-pdf-ocg-
parent-name

no equivalent in PDF
syntax; only used in
optional content
rules for associating
an OCG with a parent
OCG

(optional) a string providing the name of the OCG or
OCG node that is the parent of this OCG; this requires
that a separate OCG or OCG node is defined that
serves as a parent for this OCG; this feature makes it
possible to define nested lists of OCGs that can be dis-
played as a hierarchy in a user interface.

-cchip-pdf-ocg-
rbgroup

RBGroupsRBGroups entry in de-
fault Optional Con-
tent Configuration
Dictionary (ISO
3200-1, Table 101)

(optional) a positive integer (i.e. 1 or greater) identify-
ing the radio button group to which this OCG belongs.
All OCGs that have the same -cchip-pdf-ocg-rbgroup
number will belong to the same radio button group. A
value of -1 indicates that the OCG does not belong to
any radio button group; the default value is -1

-cchip-pdf-ocg-
gts-procsteps-
group

GTS_ProcStepsGroup GTS_ProcStepsGroup
entry in a GTS_MetaGTS_Meta--
datadata dictionary (ISO
19593-1, Table 2)

(optional) a string providing the metadata entry for
the OCG's processing steps group as defined in ISO
19593-1, "Graphic technology — Use of PDF to associ-
ate processing steps and content data – Part 1: Pro-
cessing steps for packaging and labels"; see below for
a list of pre-defined values

-cchip-pdf-ocg-
gts-procstep-
stype

GTS_ProcStepsType GTS_ProcStepsType
entry in a GTS_MetaGTS_Meta--
datadata dictionary (ISO
19593-1, Table 2)

(optional) a string providing the metadata entry for
the OCG's processing steps step as defined in ISO
19593-1, "Graphic technology — Use of PDF to associ-
ate processing steps and content data – Part 1: Pro-
cessing steps for packaging and labels"; see below for
a list of pre-defined values

 An OCG will only be created in the resulting PDF, if
there is actually content using it. The presence of
an @-cchip-pdf-ocg alone is not sufficient.

Example for a @-cchip-pdf-ocg rule:

@-cchip-pdf-ocg{
 -cchip-pdf-ocg-display-name: "Show / hide this optional content"

9. Optional content + Processing steps in pdfChip 9.1 Optional content (Layers) in pdfChip 233

callas pdfChip

 -cchip-pdf-ocg-name: "example-ocg";
 -cchip-pdf-ocg-visibility: on;
}

Optional content group nodes: @-cchip-pdf-ocg-node

An optional content group node rule establishes an optional
content group node. Such a node is not in itself associated
with any optional content, but serves as a node in the hierar-
chical display of optional content groups in a user interface.

@-cchip-pdf-ocg-node {
 /* attributes: */
 ...
}

The attributes shown in the table below are available to de-
fine properties of an optional content group node:

Attribute Attribute

Matching optional Matching optional
content property content property
in PDF 1.7 (ISO in PDF 1.7 (ISO
32000-1) 32000-1)

Description Description

-cchip-pdf-ocg-
display-name

optional first entry (of
type text string) in an
OrderOrder array (or sub-
array) in the default
Optional Content
Configuration Dictio-
nary (ISO 32000-1,
Table 101)

(optional) a string providing the display name for the
OCG node

-cchip-pdf-ocg-
name

no equivalent in PDF
syntax; only used for
associating styles
with OCG node rules

(required) a string providing the name for the OCG
node to be used in CSS style attributes

-cchip-pdf-ocg-
parent-name

no equivalent in PDF
syntax; only used in
OCG node rules for
associating an OCG
node with a parent

(optional) a string providing the name of the OCG that
is the parent of this OCG node; this requires that an
OCG is defined that serves as a parent for this OCG
node; this feature makes it possible to define nested
lists of OCGs that can be displayed as a hierarchy in a

9. Optional content + Processing steps in pdfChip 9.1 Optional content (Layers) in pdfChip 234

callas pdfChip

AAttributttribute e

MatMatching optional ching optional
ccontontent prent property operty
in PDF 1.7 (ISO in PDF 1.7 (ISO
32000-1) 32000-1)

Description Description

OCG user interface.

Example for a @-cchip-pdf-ocg-node rule:

@-cchip-pdf-ocg-node{
 -cchip-pdf-ocg-display-name: "Example of a node (without OCG)";
 -cchip-pdf-ocg-name: "example-ocg-node-name";
}

Optional content membership dictionaries:
@-cchip-pdf-ocmd

Optional Content Membership Dictionaries (OCMDs) make it
possible to go beyond associating some content with a spe-
cific OCG. Using OCMDs it is possible to associate content
(and its visibility) with the visibility of OCGs. A simple use
would be to make some content visible if at least one of three
OCGs is visible, and to turn it off if all three OCGs are off.

@-cchip-pdf-ocmd {
 /* attributes: */
 ...
}

The attributes shown in the table below are available to de-
fine properties of an optional content group node:

Attribute Attribute

Matching optional Matching optional
content property content property
in PDF 1.7 (ISO in PDF 1.7 (ISO
32000-1) 32000-1)

Description Description

-cchip-pdf-
ocmd-policy

PP entry in an Option-
al Content Member-
ship Dictionary (ISO
32000-1, Table 99)

(optional) a value defining the visibility policy for con-
tent belonging to this OCMD; possible values are any-
on, anyoff, allon, allof, the default is anyon.

-cchip-pdf- no equivalent in PDF (required) a string providing the name for the OCMD

9. Optional content + Processing steps in pdfChip 9.1 Optional content (Layers) in pdfChip 235

callas pdfChip

AAttributttribute e

MatMatching optional ching optional
ccontontent prent property operty
in PDF 1.7 (ISO in PDF 1.7 (ISO
32000-1) 32000-1)

Description Description

ocmd-name
syntax; only used for
associating styles
with OCMD rules

to be used in CSS style attributes

-cchip-pdf-ocg-
list

OCGsOCGs entry in an Op-
tional Content Mem-
bership Dictionary
(ISO 32000-1, Table
99)

(optional) a list of strings providing the names of the
OCG that are associated with this OCMD

@-cchip-pdf-ocmd {
 -cchip-pdf-ocmd-policy: allon; /* allon, alloff, anyon(default), anyoff */
 -cchip-pdf-ocmd-name: "example-ocg-group";
 -cchip-pdf-ocg-list: "example-ocg-1" "example-ocg-2";/* space-separated
list of strings */
}

Hierachies of OCGs

Hierarchies of OCGs are defined bottom up by having the
child in a hierarchy reference its parent node by means of the
-cchip-pdf-ocg-parent-name in an @-cchip-pdf-ocg or @-
cchip-ocg-node rule. The following examples demonstrates a
simply hierarchy with one top most OCG and two childs, with
the second child having a child of its own.

/*parent node*/
@-cchip-pdf-ocg{
 -cchip-pdf-ocg-display-name: "Parent OCG entry";
 -cchip-pdf-ocg-name: "example-ocg-parent";
}
/*first child node*/
@-cchip-pdf-ocg{
 -cchip-pdf-ocg-display-name: "Child #1";
 -cchip-pdf-ocg-name: "example-ocg-child-1";
 -cchip-pdf-ocg-parent-name: "example-ocg-parent";
}

9. Optional content + Processing steps in pdfChip 9.1 Optional content (Layers) in pdfChip 236

callas pdfChip

/*second child node*/
@-cchip-pdf-ocg{
 -cchip-pdf-ocg-display-name: "Child #2";
 -cchip-pdf-ocg-name: "example-ocg-child-2";
 -cchip-pdf-ocg-parent-name: "example-ocg-parent";
}
/*child of child node #2*/
@-cchip-pdf-ocg{
 -cchip-pdf-ocg-display-name: "Child of child #2";
 -cchip-pdf-ocg-name: "example-ocg-child-of-child-2";
 -cchip-pdf-ocg-parent-name: "example-ocg-child-2";
}

Importing PDF pages that already contain optional
content

When importing PDF pages that already contain optional
content, one of the following will happen:

• for any OCG in the imported PDF page for which there is
also an OCG rule with the same display name in the PDF
created by pdfChip, the properties defined in the OCG
rule will override the properties defined in the imported
PDF page; for example, if the visibility for an OCG in the
imported PDF page is set to true, whereas it is set to false
in the OCG rule, the visibility for this OCG will be false for
the PDF created by pdfChip.

• if for an OCG in an imported PDF page there is not yet al-
ready an OCG rule with the same display name in the PDF
created by pdfChip, the definition of the OCG in the im-
ported PDF page will be copied into the PDF created by
pdfChip. As a result, the properties for the OCG as they ex-
ist in the imported PDF page will then also exist in the
same manner in the PDF created by pdfChip, excluding
properties that define a relationship with other OCGs. For
example, the visibility of the OCG will be the same in the
PDF created by pdfChip but if it belonged to a radio but-
ton group, or has a parent OCG node, neither of these two
will be created in the PDF created by pdfChip. Further-
more, when two PDF pages are imported that each con-
tain an OCG with the same display name, but with differ-
ing properties, the properties of the PDF page imported
first will prevail.

9. Optional content + Processing steps in pdfChip 9.1 Optional content (Layers) in pdfChip 237

callas pdfChip

10. Very large page size
with UserUnits in pdfChip

10. Very large page size with UserUnits in pdfChip 238

callas pdfChip

10.1 Very large page sizes with
UserUnit
Previous versions of pdfChip were limited to page sizes of 200
inch by 200 inch (or 5.08m by 5.08m or 14400pt by 14400pt).
Starting with pdfChip 1.4, it is now possible to create page
sizes beyond that limit.
Internally this is possible by taking advantage of the
"UserUnit" property in the PDF syntax. A UserUnit is essen-
tially a scaling factor, and by its default value is 1. Setting it
for example to 10 multiplies all dimensional values – in the
page geometry boxes and also in all positioning values for
objects in the page description - and thus enable a page size
of 2000 inch by 2000 inch (or 50.8m by 50.8m). For detailed
information about the UserUnit entry in the PDF syntax,
please see ISO 32000-1, 8.3.2.3 User Space.

When not explicitly set, the UserUnit entry will be set by
pdfChip to a suitable value on a page by page basis. For page
sizes up to 200 inch by 200 inch, it will not be set explicitly
and thus default to 1. For any page size beyond 200 inch by
200 inch, pdfChip will set the smallest possible UserUnit val-
ue that accommodates the page size and can be divided by
10.

Setting UserUnit entry explicitly

As UserUnit entries are associated with pages in PDF syntax,
the @page rule in provides the place in CSS to define the de-
sired UserUnit entry.

Various approaches are supported:

• -cchip-force-userunit simply enforces the indi-
cated value, regardless of the page size chosen; it is im-
portant to make sure that the chosen page size can be ac-
commodated based on the UserUnit value defined; for
example a value of 2 implies that page sizes must not be
larger then 11.6m by 11.6m (i.e. 2 times 5.08m by 2 times
5.08m)

• -cchip-userunit-increment will only lead to a
UserUnit value other than the default value 1 if necessary
(because the page size is larger than 200 inch by 200 inch

10. Very large page size with UserUnits in pdfChip 10.1 Very large page sizes with UserUnit 239

callas pdfChip

/ 5.08m by 5.08m); in that case a UserUnit value is chosen
automatically that is a multiple of the value provided for
-cchip-userunit-increment. For example, if the page size is
60m by 60m (i.e. larger than 50.8m by 50.8, which is the
maximum at a UserUnit value of 10), 20 will be used as
the UserUnit value.

Only one of these two properties should be used for any giv-
en @page rule.
pdfChip will use the values that are in effect during the
cchip.printPages() call.

Example for enforcing a specific UserUnit value:

@page {
 -cchip-force-userunit: 2;
 -cchip-bleedbox: 10px 10px 480px 580px;
 -cchip-artbox: 20px 10px 480px 580px;
 }

Example for enforcing a certain multiple of automatically de-
termined UserUnit values:

@page {
 -cchip-userunit-increment: 10;
 -cchip-bleedbox: 10px 10px 480px 580px;
 -cchip-artbox: 20px 10px 480px 580px;
 }

Sample file

 UserUnits_20170122.zip

10. Very large page size with UserUnits in pdfChip 10.1 Very large page sizes with UserUnit 240

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/001/253/857/original/UserUnits_20170122.zip

11. Zoom factor in pdfChip
1.4

11. Zoom factor in pdfChip 1.4 241

callas pdfChip

11.1 Use of zoom factor for increased
precision
By default, the internal precision in pdfChip for rendering
HTML content is 1/97 inch. By implication this means that the
position objects may be off by up to half of 1/96 inch, and di-
mensions, such as font size, may be off by the same amount.
In many cases this does not have any negative impact.
Where a higher precision is required, it can be set by using
the --zoom-factor command line parameter.

Zoom factor command line parameter

The --zoom-factor command line parameter expects
an integer as its value. The integer represent the factor by
which the precision shall be multiplied. For example, a value
of 10 leads to a precision of 1/960 inch (ca. 0,0264583 mm).

Example:

pdfChip --zoom-factor=10 input.html output.pdf

11. Zoom factor in pdfChip 1.4 11.1 Use of zoom factor for increased precision 242

callas pdfChip

12. pdfChip tips&tricks

12. pdfChip tips&tricks 243

callas pdfChip

12.1 Useful code snippets for defin-
ing barcode objects, using pdfChip
specific CSS, importing PDF pages,
setting page size and other things
The content offered below implements a very simple idea but
could turn out to be real time saver for users creating their
own HTML, JavaScript and CSS to be processed by pdfChip: it
compiles a bunch of code snippets that deal with pdfChip
specific ways of using spot colors, defining barcode objects,
or making use of custom pdfChip specific CSS, JavaScript
functions, and so on.

It will be still be necessary to read the documentation, and to
know what one is doing - but once one gets the hang of it, the
only piece missing often is: exactly which syntax has to be
used to do this... Just keep the snippets provided below
(both in text form as well as a downloadable file) open in
your text editor, and help yourself whenever there is the
need.

Page size and geometry

 @page {
 /* define ArtBox, TrimBox, BleedBox, CropBox as needed; optional */
 /* valid units are px, pt, in, mm */
 /* Note: the use of ArtBox is not recommended */
 -cchip-artbox: 10mm 110mm 210mm 297mm;
 -cchip-trimbox: 10mm 110mm 210mm 297mm;
 -cchip-bleedbox: 7mm 107mm 216mm 303mm;
 -cchip-cropbox: 0mm 100mm 230mm 317mm;
 /* Size of the page, equivalent to MediaBox, origin always at 0/0 */
 size: 230mm 417mm;
 }
 In order to work with page geometry boxes in JavaScript the syntax is:
 cchip.pages[i].artbox

 pdfchip_Self-Service-Code-Snippets_2018-09-07.txt

12. pdfChip tips&tricks 12.1 Useful code snippets for defining barcode objects, using pdfChip specific CSS, importing PDF pages,
setting page size and other things

244

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/001/893/768/original/pdfchip_Self-Service-Code-Snippets_2018-09-07.txt

 cchip.pages[i].bleedbox
 cchip.pages[i].trimbox
 cchip.pages[i].cropbox
 e.g.
 if (cchip.pages[1].bleedbox) {
 ...do something with bleedbox...
 }

Defining fonts

 /*
 Note: for reliable results
 - associate one font file with one font-family name
 - avoid any automatic or heuristic mapping of fonts or font faces
 */
 @font-face {
 font-family: 'SourceCodePro-Regular';
 src: url('./fonts/SourceCodePro-Regular.otf');
 }
 @font-face {
 font-family: 'OpenSans-CondLight';
 src: url('./fonts/OpenSans-CondLight.ttf');
 }

Placing PDF pages

The URL for PDF supports the following features:
 <URL>#page=<PAGE-NUM>&box=<BOXNAME>&boxadj=<LEFT>,<TOP>,<RIGHT>,<BOTTOM>

Place the first page of "sample.pdf"

Places the second page of sample.pdf

Places the second page of sample.pdf, imported page area is based on its TrimBox

Places the second page of sample.pdf, imported page area is based on its TrimBox,

12. pdfChip tips&tricks 12.1 Useful code snippets for defining barcode objects, using pdfChip specific CSS, importing PDF pages,
setting page size and other things

245

callas pdfChip

slightly enlarged on left and right sides by 3mm

Import PDF pages ... :
 in HTML:

 in CSS:
 background:url(“sample.pdf#page=2”)
 background-image:url(“sample.pdf#page=2”)

Rotation and other transforms

 .rotated-45 {
 position: absolute;
 left: 20mm; bottom: 100mm;
 -webkit-transform: rotate(-45deg);
 -webkit-transform-origin: left bottom;
 }
/* recommended resource:
https://developer.mozilla.org/en-US/docs/Web/CSS/transform
*/

Setting pdfChip color definitions

.pdfchip_colordefinitions {
 /*
 DeviceCMYK examples
 provide 4 values in the range 0.0..1.0
 */
 color: cyan;
 color: -cchip-cmyk(1.0,0.0,0.0,0.0);
 color: magenta;
 color: -cchip-cmyk(0.0,1.0,0.0,0.0);
 color: yellow;
 color: -cchip-cmyk(0.0,0.0,1.0,0.0);
 color: black;
 color: -cchip-cmyk(0.0,0.0,0.0,1.0);

 /*

12. pdfChip tips&tricks 12.1 Useful code snippets for defining barcode objects, using pdfChip specific CSS, importing PDF pages,
setting page size and other things

246

callas pdfChip

 Lab D50 example
 provide 3 values, first value in the range 0.0..100.0,
 the 2nd and 3rd value in the range -127.0 .. 128.0
 */
 color: pink;
 color: -cchip-lab(67.74,70.68,-10.31);
 /*
 DeviceGray example
 provide 1 value in the range 0.0..1.0
 Note: 0.0 is black, and 1.0 is white
 */
 color: gray;
 color: -cchip-gray(0.3);
 /*
 ICC based Gray example
 provide 1 value in the range 0.0..1.0
 Note: 0.0 is black, 1.0 is white
 first argument must be a valid path to the respective ICC profile
 */
 color: darkgray;
 cchip-icc-gray('../iccprofiles/gamma_2-2.icc', 0.3);
 /*
 ICC based RGB example
 provide 3 values in the range 0.0..1.0
 first argument must be a valid path to the respective ICC profile
 */
 color: green;
 color: -cchip-icc-rgb('../iccprofiles/sRGBIEC61966-2.icc', 0.0,0.5,0.0);
 /*
 ICC based CMYK example
 provide 4 values in the range 0.0..1.0
 first argument must be a valid path to the respective ICC profile
 */
 color: green;
 color: -cchip-icc-cmyk('../iccprofiles/PSOcoated_v3.icc', 1,0.0,1,0.0);
 /*
 spot color examples with CMYK alternate space
 provide
 - name of the spot color
 - 4 values in the range 0.0..1.0
 - [optional] tint value for the spot color
 Note: for DeviceGray or ICC based alternate spaces adjust per syntax from
above

12. pdfChip tips&tricks 12.1 Useful code snippets for defining barcode objects, using pdfChip specific CSS, importing PDF pages,
setting page size and other things

247

callas pdfChip

 */
 color: orange;
 color: -cchip-cmyk('Spot P 34-8 C', 0.0,0.75,0.98,0.0);
 color: green;
 color: -cchip-cmyk('Forest Green', 0.81,0.0,0.92,0.22);
 color: purple;
 color: -cchip-cmyk('Deep Purple', 0.84,1.0,0.0,0.12);
 color: magenta;
 color: -cchip-cmyk('Magenta', 0.0,0.1,0.0,0.0);
 color: black;
 color: -cchip-cmyk('Die line', 0.0,0.0,0.0,1.0);
}
 /*
 First, define a -cchip-devicen rule to establish a DeviceN colorspace
 Consists of:
 • -cchip-devicen-name: name by which the DeviceN colorspace is referenced
inside CSS
 • -cchip-components: definitions of the colorants of the DeviceN color-
space via spot color definitions
 In order to actually use the color, see '-cchip-devicen' below
 */
 @-cchip-devicen{
 -cchip-devicen-name: "test-colorspace-name";
 -cchip-components:
 -cchip-cmyk('Cyan', 1.0, 0.0, 0.0, 0.0)
 -cchip-cmyk('Magenta', 0.0, 1.0, 0.0, 0.0)
 -cchip-cmyk('Yellow', 0.0 ,0.0 ,1.0 ,0.0)
 -cchip-cmyk('Black', 0.0, 0.0, 0.0, 1,0)
 -cchip-cmyk('Fifth colorant', 0.5, 0.5, 0.5, 0.0)
 -cchip-cmyk('Sixth colorant', 0.0, 0.5, 0.5, 0.2);
 }
.pdfchip_devicen_colorspace {
 /*
 DeviceN color example
 provide
 - name of the DeviceN color space
 - as many values in the range 0.0..1.0 as there are colornats in the Devi-
ceN color space
 */
 color: -cchip-devicen('test-colorspace-name', 1.0, 0.0, 0.0, 0.0, 0.0, 0.0);
}

12. pdfChip tips&tricks 12.1 Useful code snippets for defining barcode objects, using pdfChip specific CSS, importing PDF pages,
setting page size and other things

248

callas pdfChip

Setting PDF ExtGState parameters (overprint,
etc.)

 .pdfchip_extgstate {
 -cchip-flatness-tolerance : 5.0; /* >= 0.0; default: 1.0 */
 -cchip-smoothness-tolerance: 0.0; /* 0.0 … 1.0; default: -
1.0 */
 -cchip-text-knockout: 1; /* 0 or 1; default: 0 */
 -cchip-overprint: 1; /* 0 or 1; default: 0 */
 -cchip-overprint-mode: 0; /* 0 or 1; default: 0 */
 -cchip-stroke-adjustment: 1; /* 0 or 1; default: 0 */
 -cchip-rendering-intent: perceptual;
 /* absolute-colorimetric or relative-colorimetric or per-
ceptual
 or saturation; default: relative-colorimetric */
 opacity: 0.5 /* 0.0..1.0; default: 1.0
*/
 mix-blend-mode: multiply;
 background-blend-mode: difference;
 /* normal | multiply | screen | overlay | darken | light-
en | color-dodge |
 color-burn | hard-light | soft-light | difference | ex-
clusion | hue |
 saturation | color | luminosity; default: normal
*/ }
 Example:
 .background-spot_orange-ICCbasedcmyk {
 -cchip-overprint: 1;
 -cchip-overprint-mode: 0;
 -cchip-rendering-intent: absolute-colorimetric;
 background-color: orange;
 background-color: -cchip-icc-cmyk('./ISO Coated v2 (ECI).icc', 'Or-
ange',0.0,0.8,0.8,0.0, 0.75);
 }

Barcode objects (for 1D and 2D codes)

======= Syntax example for barcode objects: =======
 <object type="application/barcode">

12. pdfChip tips&tricks 12.1 Useful code snippets for defining barcode objects, using pdfChip specific CSS, importing PDF pages,
setting page size and other things

249

callas pdfChip

 <param name="data" value="123456789012">
 <param name="type" value="EAN 13">
 <param name="modulewidth" value="0.33mm">
 <param name="barwidthreduction" value="10%">
 <param name="textplacement" value="none">
 </object>
 - important:
 - height and width may be provided through CSS styling (e.g.:
style="width:30mm; height:30mm;")
 - for professional use it is best though to use modulewidth to define the
size
 - for any inkjet or similar processes, substantial barwidth redution will
normally be necessary!
 - need help or guidance? send an email to support@callassoftware.com
======= Types of barcodes / 2D Codes: =======
<param name="type" value="Code 11">
<param name="type" value="Code 2 of 5 Standard">
<param name="type" value="Code 2 of 5 Interleaved">
<param name="type" value="Code 2 of 5 IATA">
<param name="type" value="Code 2 of 5 Matrix">
<param name="type" value="Code 2 of 5 DataLogic">
<param name="type" value="Code 2 of 5 Industry">
<param name="type" value="Code 39">
<param name="type" value="Code 39 Full ASCII">
<param name="type" value="EAN 8">
<param name="type" value="EAN 8 + 2 Digits">
<param name="type" value="EAN 8 + 5 Digits">
<param name="type" value="EAN 13">
<param name="type" value="EAN 13 + 2 Digits">
<param name="type" value="EAN 13 + 5 Digits">
<param name="type" value="EAN/UCC 128">
<param name="type" value="UPC 12">
<param name="type" value="Codabar 2 Widths">
<param name="type" value="Code 128">
<param name="type" value="DP Leitcode">
<param name="type" value="DP Identcode">
<param name="type" value="ISBN 13 + 5 Digits">
<param name="type" value="ISMN">
<param name="type" value="Code 93">
<param name="type" value="ISSN">
<param name="type" value="ISSN + 2 Digits">
<param name="type" value="Flattermarken">
<param name="type" value="GS1 DataBar (RSS-14)">

12. pdfChip tips&tricks 12.1 Useful code snippets for defining barcode objects, using pdfChip specific CSS, importing PDF pages,
setting page size and other things

250

callas pdfChip

<param name="type" value="GS1 DataBar Limited (RSS)">
<param name="type" value="GS1 DataBar Expanded (RSS)">
<param name="type" value="Telepen Alpha">
<param name="type" value="UCC 128">
<param name="type" value="UPC A">
<param name="type" value="UPC A + 2 Digits">
<param name="type" value="UPC A + 5 Digits">
<param name="type" value="UPC E">
<param name="type" value="UPC E + 2 Digits">
<param name="type" value="UPC E + 5 Digits">
<param name="type" value="USPS PostNet 5 (ZIP)">
<param name="type" value="USPS PostNet 6 (ZIP+cd)">
<param name="type" value="USPS PostNet 9 (ZIP+4)">
<param name="type" value="USPS PostNet 10 (ZIP+4+cd)">
<param name="type" value="USPS PostNet 11 (ZIP+4+2)">
<param name="type" value="USPS PostNet 12 (ZIP+4+2+cd)">
<param name="type" value="Plessey">
<param name="type" value="MSI">
<param name="type" value="SSCC 18">
<param name="type" value="LOGMARS">
<param name="type" value="Pharmacode One-Track">
<param name="type" value="PZN7">
<param name="type" value="Pharmacode Two-Track">
<param name="type" value="Brazilian CEPNet">
<param name="type" value="PDF417">
<param name="type" value="PDF417 Truncated">
<param name="type" value="MaxiCode">
<param name="type" value="QR-Code">
<param name="type" value="Code 128 Subset A">
<param name="type" value="Code 128 Subset B">
<param name="type" value="Code 128 Subset C">
<param name="type" value="Code 93 Full ASCII">
<param name="type" value="Australian Post Custom">
<param name="type" value="Australian Post Custom2">
<param name="type" value="Australian Post Custom3">
<param name="type" value="Australian Post Reply Paid">
<param name="type" value="Australian Post Routing">
<param name="type" value="Australian Post Redirect">
<param name="type" value="ISBN 13">
<param name="type" value="Royal Mail 4 State (RM4SCC)">
<param name="type" value="Data Matrix">
<param name="type" value="EAN 14 (GTIN 14)">
<param name="type" value="VIN / FIN">

12. pdfChip tips&tricks 12.1 Useful code snippets for defining barcode objects, using pdfChip specific CSS, importing PDF pages,
setting page size and other things

251

callas pdfChip

<param name="type" value="Codablock-F">
<param name="type" value="NVE 18">
<param name="type" value="Japanese Postal">
<param name="type" value="Korean Postal Authority">
<param name="type" value="GS1 DataBar Truncated (RSS)">
<param name="type" value="GS1 DataBar Stacked (RSS)">
<param name="type" value="GS1 DataBar Stacked Omnidir (RSS)">
<param name="type" value="GS1 DataBar Expanded Stacked (RSS)">
<param name="type" value="PLANET 12 digit">
<param name="type" value="PLANET 14 digit">
<param name="type" value="Micro PDF417">
<param name="type" value="USPS Intelligent Mail Barcode (IM)">
<param name="type" value="Plessey Bidirectional">
<param name="type" value="Telepen">
<param name="type" value="GS1 128 (EAN/UCC 128)">
<param name="type" value="ITF 14 (GTIN 14)">
<param name="type" value="KIX">
<param name="type" value="Code 32">
<param name="type" value="Aztec Code">
<param name="type" value="DAFT Code">
<param name="type" value="Italian Postal 2 of 5">
<param name="type" value="DPD">
<param name="type" value="Micro QR-Code">
<param name="type" value="HIBC LIC 128">
<param name="type" value="HIBC LIC 39">
<param name="type" value="HIBC PAS 128">
<param name="type" value="HIBC PAS 39">
<param name="type" value="HIBC LIC Data Matrix">
<param name="type" value="HIBC PAS Data Matrix">
<param name="type" value="HIBC LIC QR-Code">
<param name="type" value="HIBC PAS QR-Code">
<param name="type" value="HIBC LIC PDF417">
<param name="type" value="HIBC PAS PDF417">
<param name="type" value="HIBC LIC Micro PDF417">
<param name="type" value="HIBC PAS Micro PDF417">
<param name="type" value="HIBC LIC Codablock-F">
<param name="type" value="HIBC PAS Codablock-F">
<param name="type" value="QR-Code 2005">
<param name="type" value="PZN8">
<param name="type" value="DotCode">
<param name="type" value="Han Xin Code">
<param name="type" value="USPS Intelligent Mail Package (IMpb)">
<param name="type" value="Swedish Postal Shipment Item ID">

12. pdfChip tips&tricks 12.1 Useful code snippets for defining barcode objects, using pdfChip specific CSS, importing PDF pages,
setting page size and other things

252

callas pdfChip

Optional parameters for barcode objects

======= Optional parameters (default values are enclosed with **asterisks**):
=======
<param name="format" value="A##B###C&">
 String formatting
 Provides control over how strings are formatted. For more details see section
4.6 Format in the Barcode Reference.
<param name="modulewidth" value="0.33mm">
 -1, units: mm, in, mils, **pixel**
 Module width
 Provides control over the Module width. For more details see section 4.2 Mod-
ule Width in the Barcode Reference.
<param name="hres" value="600">
 -1
 Horizontal resolution
 Providing the horizontal resolution triggers an optimisation of the module
width for best possible consistency of bars and gaps in the barcode and thus the
barcode readability. For more details see section 4.2 Module Width in the Barcode
Reference.
<param name="vres" value="600">
 -1
 Vertical resolution
 Providing the vertical resolution triggers an optimisation of the module width
for best possible consistency of bars and gaps in the barcode and thus the barcode
readability. For more details see section 4.2 Module Width in the Barcode Refer-
ence.
<param name="textplacement" value="none">
 above, **below**, none
 Text placement
 Provides control over the positioning of the human readable text relative to
the barcode proper. Applies only to 1D codes.
<param name="textdistance" value="0.5mm">
 -1, units: mm, in, mils, **pixel**
 Text distance
 Provides control over the distance of the human readable text from the barcode
proper. Applies only to 1D codes.
<param name="bearerbars" value="topbottom">
 none, top, bottom, topbottom
 Bearer bars
 Provides control over the presence and position of bearer bars. For more de-

12. pdfChip tips&tricks 12.1 Useful code snippets for defining barcode objects, using pdfChip specific CSS, importing PDF pages,
setting page size and other things

253

callas pdfChip

tails see section 3.3 Barcode Glossary, Bearer Bars, 6.1.43 ITF-14 and 6.1.66 UPC
SCS (Shipping Container Symbols)in the Barcode Reference.
<param name="bearerwidth" value="0.5mm">
 -1, units: mm, in, mils, **pixel**
 Bearer width
 Provides control over the width of bearer bars. For more details see section 3.
3 Barcode Glossary, Bearer Bars, 6.1.43 ITF-14 and 6.1.66 UPC SCS (Shipping Con-
tainer Symbols)in the Barcode Reference.
<param name="notchheight" value="0.5mm">
 -1, units: mm, in, mils, **pixel**
 Notch height
 Provides control over the notch height. For certain types of barcodes like e.g.
 "EAN 13", some of the bars are typically longer than the rest of the bars. This
parameter provides control over by how much they will be longer.
<param name="barwidthreduction" value="1%">
 0, units: %, mm, in, mils, **pixel**
 Bar width reduction (BWR)
 Provides control over the bar width reduction. For more details see section 4.
3 Bar Width Reduction (Pixel Shaving) in the Barcode Reference.
<param name="quietzoneleft" value="0.5">
 0
 Quiet zone left
 Provides control over the quiet zone on the left. For more details see section
4.4 Quiet Zone in the Barcode Reference.
<param name="quietzoneright" value="0.5">
 0
 Quiet zone right
 Provides control over the quiet zone on the right. For more details see sec-
tion 4.4 Quiet Zone in the Barcode Reference.
<param name="quietzonetop" value="0.5">
 0
 Quiet zone top
 Provides control over the quiet zone at the top. For more details see section
4.4 Quiet Zone in the Barcode Reference.
<param name="quietzonebottom" value="0.5">
 0
 Quiet zone bottom
 Provides control over the quiet zone at the bottom. For more details see sec-
tion 4.4 Quiet Zone in the Barcode Reference.
<param name="quietzoneunit" value="X">
 X, mm, in, mils, pixel. X: multiples of module width
 Quiet zone unit
 Provides control over the unit used for controlling the quiet zone. For more

12. pdfChip tips&tricks 12.1 Useful code snippets for defining barcode objects, using pdfChip specific CSS, importing PDF pages,
setting page size and other things

254

callas pdfChip

details see section 4.4 Quiet Zone in the Barcode Reference.

Minimal boilerplate HTML file

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title> ->->-> useful title <-<-<- </title>
<!-- referenced CSS or script files (adjust as needed):
<link rel="stylesheet" href="./folder/file.css" type="text/css" />
 <script src="./folder/file.js"></script>
-->
<script>
function cchipPrintLoop() {
cchip.printPages(1); // limit output to 1 page
console.log ("One and only page created (output is limited to 1 page)");
}
</script>
 <style>
 body, * {
 background: transparent;
 margin: 0;
 padding: 0;
 box-sizing: border-box;
 -webkit-box-sizing: border-box;
 }
 @page {
 size: 216mm 303mm; /* A4 page with room for 3mm bleed on each side) */
 -cchip-trimbox: 3mm 3mm 210mm 297mm;
 -cchip-bleedbox: 0mm 0mm 216mm 303mm;
 -cchip-cropbox: 0mm 0mm 216mm 303mm;
 }
 </style>

</head>
<body>
<div>
<p>Put some content here, or use JavaScript to generate some, or include some
SVG</p>
<svg width="100mm" height="100mm" viewBox="0 0 100 100">

12. pdfChip tips&tricks 12.1 Useful code snippets for defining barcode objects, using pdfChip specific CSS, importing PDF pages,
setting page size and other things

255

callas pdfChip

<g transform="translate(20,-5) scale(0.7)" >
<rect x="0" y="0" height="100" width="100" style="stroke:none; fill: -cchip-cmyk(0.
2,0.0,0.0,0.0)"></rect>
<polygon
points="65,10 5,96 97,39 10,39 80,97"
stroke-linejoin="round"
style= "
fill:-cchip-cmyk('My spot color',0.4,0.0,0.8,0.0);
fill-rule:nonzero;
-cchip-overprint: 1;
stroke:-cchip-cmyk(0.1,0.9,0.0,0.0);
stroke-width:2;"/>
 </g>
</svg>
</div>
</body>
</html>

Minimal boilerplate SVG file

<?xml version="1.0" encoding="utf-8"?>
<svg version="1.1"
 xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"
 width="216mm" height="303mm">
<style type="text/css">
@page {
 size: 216mm 303mm; /* A4 page with room for 3mm bleed on each side) */
 -cchip-trimbox: 3mm 3mm 210mm 297mm;
 -cchip-bleedbox: 0mm 0mm 216mm 303mm;
 -cchip-cropbox: 0mm 0mm 216mm 303mm;
}
</style>
<defs></defs>
<rect x="1.5mm" y="1.5mm"
width="213mm" height="300mm"
stroke="-cchip-cmyk(1.0,0.2,0.0,0.0)"
fill="-cchip-cmyk(0.0,0.1,1.0,0.0)"
style= "-cchip-overprint: 1; -cchip-overprint-mode: 1;"
>
</rect>
<foreignObject x="25mm" y="20mm" width="80mm" height="80mm">

12. pdfChip tips&tricks 12.1 Useful code snippets for defining barcode objects, using pdfChip specific CSS, importing PDF pages,
setting page size and other things

256

callas pdfChip

<object xmlns="http://www.w3.org/1999/xhtml"
type="application/barcode"
style="margin: 0; padding: 0;
background-color:-cchip-cmyk(0.0,0.0,0.0,0.0);
color: -cchip-cmyk(1.0,0.0,1.0,0.4);">
<param name="type" value="Data Matrix"> </param>
<param name="data" value="Created from SVG file."> </param>
<param name="modulewidth" value="1mm"> </param>
<param name="quietzoneleft" value="1"> </param>
<param name="quietzoneright" value="1"></param>
<param name="quietzonetop" value="1"></param>
<param name="quietzonebottom" value="1"></param>
<param name="quietzoneunit" value="X"></param>
</object>
</foreignObject>
</svg>

 pdfChip-file-attachments.zip

12. pdfChip tips&tricks 12.1 Useful code snippets for defining barcode objects, using pdfChip specific CSS, importing PDF pages,
setting page size and other things

257

callas pdfChip

https://media.screensteps.com/attachment_assets/assets/001/787/025/original/pdfChip-file-attachments.zip

	1. Introduction
	1.1 pdfChip in a Nutshell
	What is it?
	HTML + CSS + JavaScript
	High-quality PDF
	A Command-Line Application

	How does it work?
	Architecture
	Built on WebKit
	Extending WebKit
	Tell me more!

	1.2 What pdfChip is Not
	A Tool, not a Solution
	Not a Report Engine
	Not a Web Site Conversion Tool

	1.3 The History of pdfChip
	A customizable Preflight Report
	Not another report language...
	Email Archival done Right

	1.4 Main Features
	HTML, CSS and Javascript
	Page sizes and page boxes
	Professional color
	Font support
	Using PDF and SVG
	ISO compliant PDF
	Inserting custom metadata
	Support for JavaScript
	Beautiful formulas with MathML
	Inserting barcodes
	Generating multiple pages
	Advanced pagination
	The problem with pagination
	Multiple processing steps
	The cchip object

	Limitations
	Columns
	Canvas

	1.5 Learning pdfChip - the Tutorial
	Folder structure and conventions
	Building tutorial examples
	The list with tutorial steps
	Download ZIP archive with pdfChip tutorial files

	1.6 pdfChip Use Cases
	Variable data PDF creation and transactional printing
	Online editing
	Imposition workflows
	Creating downloadable web content
	Magazine and Newspaper publishing
	Book publishing

	1.7 License Levels
	Server licensing and activation
	pdfChip license levels
	Upgrading between license levels
	Restrictions
	Flavor overview
	Getting help on pricing

	1.8 Handling Licensing through the License Server
	Using the License Server
	Using the License Server on-premise

	1.9 Where to Go from Here
	pdfChip Reference Manual
	The callas software web site
	Commercial questions
	Technical questions

	1.10 Overview of pdfChip versions in pdfToolbox

	2. Reference Manual
	2.1 How to install and run
	Installing pdfChip
	Activating pdfChip
	Request an activation code
	Parameters
	Activating pdfChip
	Parameters

	Deactivating pdfChip
	Request the current activation code
	Deactivate using the activation code

	Using pdfChip
	Return codes

	2.2 Concepts
	callas pdfChip – the Foundation
	So if it’s not for converting web sites to PDF – what is it for?
	Overall architecture of callas pdfChip
	Performance
	A word on…
	… CSS 3
	… MathML
	… SVG
	… JavaScript

	Single pass processing
	Multiple pass processing

	2.3 pdfChip specific HTML aspects
	Use PDF as image format
	URL syntax for PDF pages
	Example
	Supported tags HTML and CSS properties

	Use Adobe Illustrator files (.ai) as image format
	Support for image file formats
	Create File Attachment annotations
	Example

	Embedding files as attachments into the generated PDF
	Example

	Add XMP Metadata
	Arrays of simple types
	Arrays of structs
	Examples
	Adding the "dc:title" property
	Adding a "xmpMM::History" property

	Create PDF Standards Identifier
	PDF/A
	PDF/X
	PDF/E
	PDF/VT
	PDF/UA
	Add Output Intents
	How to handle parts in separate HTML files
	Defining the transparency blend space
	Examples
	With referenced ICC profile
	Without referenced ICC profile

	2.4 Using pdfChip to add barcodes and matrix codes
	Quick lookup of supported barcodes
	How to specify barcodes
	Meaning of values provided under "Data"
	Optional parameters
	String formatting
	Module width
	Horizontal resolution
	Vertical resolution
	Text placement
	Text distance
	Bearer bars
	Bearer width
	Notch height
	Bar width reduction (BWR)
	Quiet zone left
	Quiet zone right
	Quiet zone top
	Quiet zone bottom
	Quiet zone unit
	Escaping

	2.5 pdfChip specific CSS aspects
	Page geometry boxes
	Force Mediabox and CropBox to be equal and sit at the origin (0,0)

	Rotating page content
	Page breaks
	Defining colors for print - CMYK, spot or ICC based color
	Device color spaces
	Device independent color spaces (ICC based and Lab)
	Spot color (with Alternate color defintions using device dependent or device independent color spaces)
	DeviceN color spaces
	Limitations

	Extended Graphics State parameters
	Special pdfChip parameters
	Transparency

	PDF as image in background
	Setting the text rendering mode

	2.6 pdfChip specific JavaScript
	"Normal" HTML JavaScript
	Modifying the print loop
	Use in one-pass conversions
	Use in multiple-pass conversions
	Reference
	cchipPrintLoop
	cchip
	cchip.printPages
	cchip.beginPrinting(), cchip.endPrinting()
	cchip.onPrintReady(callback)
	cchip.dumpStaticHtml()
	cchip.log
	cchip.urls
	cchip.overlays
	cchip.underlays
	cchip.versionString
	cchip.pages

	2.7 pdfChip specific SVG aspects
	Example

	2.8 Limitations and warnings
	In CSS 3 but not (well) supported in pdfChip
	CSS 3 properties for dynamic page content will have not effect in pdfChip
	Columns
	The CSS 3 Paged Media Module

	In MathML 3 but not (well) supported in pdfChip

	2.9 pdfChip CSS Feature Compatibility

	3. What is new in 1.1
	3.1 Support for DeviceN color spaces
	pdfChip CSS rule "-cchip-devicen"

	3.2 Passing variable information to HTML template using "--import" on the command line
	The "--import" command line parameter
	Command line argument
	JSON expression or Javascript variable
	Using the variable information in JavaScript
	Example

	3.3 Additional info when placing PDF pages (# of pages, page geometry)
	cchip.getPDFPageCount(obj)
	Example for cchip.getPDFPageCount(obj)

	cchip.getPDFPageBox(obj, box)
	Example for cchip.getPDFPageBox(obj, box)

	3.4 Creating multiple PDFs with one pdfChip command line invocation
	cchip.setOutputPdf()
	cchip.closeOutputPdf()
	Example

	4. Links between HTML files are preserved when converted into a single PDF
	4.1 Links between HTML files are preserved when converted into a single PDF

	5. Barcodes and matrix codes in pdfChip
	5.1 List of supported barcodes and matrix codes
	List of barcodes and matrix codes supported by pdfChip
	Equivalent barcodes

	5.2 Extended list of parameters for the barcode object
	5.3 How to define the size of barcode objects
	Barcode object example
	Defining the size of a barcode or matrix code
	Using "modulewidth" to define the size of an EAN code
	Using "width" style attribute to define the size of an EAN code
	Using "modulewidth" to define the size of an EAN code, while creating an area for the EAN code by setting the size of the parent <div>

	5.4 How to define barcode objects in HTML and SVG
	Defining a barcode object in HTML
	Example

	Defining a barcode object inside an SVG object
	Example

	Defining a barcode object inside an SVG file
	Example

	5.5 How to create and update barcode objects dynamically
	5.6 Using gradient or image as "color" for QR code
	Regular "black on white" QR Code
	Defining a gradient as the "color" for a QR Code
	Defining an image as the "color" for a QR Code
	Defining an image based pattern as the "color" for cells in a QR Code

	5.7 Adjust page size for result PDF to size of placed PDF
	index.html
	params.js
	qrcode.js

	5.8 How to create rectangular 16x48 DataMatrix Industry code
	5.9 How to create ITF-14 barcode with bearer bars
	PDF output from example file

	6. Export InDesign files into HTML/CSS templates
	6.1 Overview and installation
	Installation
	Open the Scripts Utilities in Indesign
	Scripts palette
	Install the export filter
	The script and a "js" folder are now listed in the Scripts palette

	6.2 How does the export filter work?
	Exporting InDesign into pdfChip templates
	Multi page files
	Auto convert text using custom formatting or character styles into paragraph styles
	Hyphenation

	6.3 Create a simple HTML template
	The InDesign Ticket Example
	Export the InDesign file into a pdfChip HTML template using the Scripts palette
	The "export2pdfChip.jsx" script will create a folder next to the InDesign file
	You may now open the result in pdfToolbox or any other PDF viewer

	6.4 Create an HTML template that can be used for "mail merge" style multi-page PDF generation
	Marking variable text in InDesign
	Before we start the export...
	The mail merge result
	How did that work?
	The "attendees100.js" file

	6.5 Create an HTML template for invoices
	The InDesign file
	HTML template created via the export2pdfChip.jsx plug-in
	The invoice PDF files are as usual created by processing the index.html with pdfChip

	6.6 Autocreate Paragraph Styles from custom styling

	7. Logging and debugging techniques
	7.1 Extended logging capabilities: "--dump-static-html" command line parameter
	The "--dump-static-html" command line parameter
	Command line argument.
	Destination folder
	Output file names format
	Example

	7.2 Using "pdfChip Debug" browser plug-in for interactive debugging (1.2)
	Installing pdfChip Debug
	Activating pdfChip Debug
	Initiate a debugging session
	Google Chrome Developer Tools
	Maximizing use of Google Chrome Developer Tools for pdfChip projects

	8. Loading resources dynamically
	8.1 Dynamically update barcodes (or other HTML objects using parameters)
	8.2 Dynamically update images
	The cchip.onPrintReady() function
	Dynamically load images
	Dynamically load images using an array
	Dynamically load images using cchipUtils.js

	9. Optional content + Processing steps in pdfChip
	9.1 Optional content (Layers) in pdfChip
	Optional content rules
	Optional content groups: @-cchip-pdf-ocg
	Optional content group nodes: @-cchip-pdf-ocg-node
	Optional content membership dictionaries: @-cchip-pdf-ocmd
	Hierachies of OCGs
	Importing PDF pages that already contain optional content

	10. Very large page size with UserUnits in pdfChip
	10.1 Very large page sizes with UserUnit
	Setting UserUnit entry explicitly
	Sample file

	11. Zoom factor in pdfChip 1.4
	11.1 Use of zoom factor for increased precision
	Zoom factor command line parameter

	12. pdfChip tips&tricks
	12.1 Useful code snippets for defining barcode objects, using pdfChip specific CSS, importing PDF pages, setting page size and other things
	Page size and geometry
	Defining fonts
	Placing PDF pages
	Rotation and other transforms
	Setting pdfChip color definitions
	Setting PDF ExtGState parameters (overprint, etc.)
	Barcode objects (for 1D and 2D codes)
	Optional parameters for barcode objects
	Minimal boilerplate HTML file
	Minimal boilerplate SVG file

