
New in callas
pdfToolbox 9

Table of Contents
Large format ...4

Add ink layer ..5

Adding grommets ..10

Tiling...13

Add borders ...17

Add bleed ...21

Variables and JavaScript: JavaScript..24

Taking variables to the next level ...25

Variables and JavaScript: Variables in general ..30

Variables using JavaScript: Overview ..39

Variables using JavaScript: pdfToolbox objects and methods ...53

Extracting information from an XML Report file via XPath (9.1)..58

Using an external JSON jobticket file (9.1) ...60

Defining variables using app.requires with closed choice of allowed values (9.1)62

Using "trigger" values to adjust processing in a Process Plan (9.1)..64

Debugging JavaScript Variables (9.1)...67

Shapes ..71

Shapes: An overview ...72

Defining shapes ...74

Applying shapes...91

"Shapes" features extended in pdfToolbox 9.1 ...103

Efficiently creating varnish or white background (requires at least v9.1)110

Spectral color and CxF ...118

Embed CxF data (import) ..119

Extract and remove CxF information..123

Analyze CxF information ...129

Introduction: CxF and spectral data ...133

New and extended properties ...134

New and enhanced Properties in 9.0..135

New and enhanced Properties in 9.1..136

How to use the "Number of hits in the check" property (9.0) ...137

New and extended Fixups..139

New and enhanced Fixups in pdfToolbox 9.1 ..140

Wireframe and selective viewing...142

Examining page content..143

Advanced barcode and matrix code features ...146

Advanced 2D code use cases: Deutsche Post DP Matrix, Data Matrix Industry, rainbow colored
QR Code (requires pdfToolbox 9.1)...147

Debugging of Profiles and Process plans (9.1) ...153

How to create a detailed log when executing Process Plans (or Profiles, Checks or Fixups) ..154

Processing Steps: Overview (9.1) ..161

Design and more..162

Using metadata for standardisation...164

Viewing the layers in a document...166

Working with processing steps metadata for a layer...168

Checking processing steps information ...171

Fixing processing steps data ...174

Large format

Large format 4

New in callas pdfToolbox 9

Add ink layer

This functionality adds an additional, colored object to
the PDF. For determining where existing objects are
painting, the page will be internally rendered. A new
shape will be created based on this result as a vector
object.

Available settings

The name of the created spot color can be chosen and the
color tint value be defined.
Also the the position of the shape can be set. Optionally, the
new object can be created on a layer.

Large format Add ink layer 5

New in callas pdfToolbox 9

Create "Varnish" object for all painting content

For example, to create a new object, which covers all painting
content, just choose "For all objects" and define a color val-
ue.

Large format Add ink layer 6

New in callas pdfToolbox 9

The result

After processing a new vector object, using the spot color
"Varnish" will be added. Covering all content, also objects us-
ing white.

Large format Add ink layer 7

New in callas pdfToolbox 9

Inspecting the result - individual separation for
spot color

When inspecting the result using "Visualize individual separa-
tions", the new created object using "Varnish" can easily be
reviewed.

Large format Add ink layer 8

New in callas pdfToolbox 9

Creation on a layer

If required, the newly added object will be placed automati-
cally on a layer, which will have the same like the spot color.

Large format Add ink layer 9

New in callas pdfToolbox 9

Adding grommets

During the production of banner or other large format
products, sometimes grommets must be added.
To add marks, where these grommets shall be placed
after the product is printed, this Switchboard action
can be used.

Define the settings

To define the positioning of the grommets, the margin for all
4 edges can be defined.

Of course the number of grommets for the horizontal and
vertical edges must be defined. The internal calculation will
determine the distance between the grommets.

Large format Adding grommets 10

New in callas pdfToolbox 9

Inspecting the result

Marks for the grommets will be positioned accordingly to the
defined settings.

Large format Adding grommets 11

New in callas pdfToolbox 9

Grommets by distance

An additional way to add grommets to the document is by
defining the distance between the grommets vertically and
horizontally.

Large format Adding grommets 12

New in callas pdfToolbox 9

Tiling

Tiling will cut the document in a number of parts to
prepare the document for various large format printing
methods.

The document can either be cut by a defined size for
the resulting tiles or by the number of tiles horizontally
and vertically.

Define the settings

Using the Switchboard action, it is possible to define the size
of the resulting tiles and the overlap. Additionally the con-
struction direction vertically and horizontally can be defined.

An additional page with construction information can be
added as well.

Large format Tiling 13

New in callas pdfToolbox 9

Construction information

The construction information contains some basic informa-
tion about the file and the number of tiles, as well as a sketch
for the tile layout.

Large format Tiling 14

New in callas pdfToolbox 9

Information for overlap

If an overlap has been defined, a small mark to indicate there
the next, overlapping tile has to be positioned will be added.
Also the number of the actual tile will be printed into the
overlapping area (which will become covered by the next
tile).

Large format Tiling 15

New in callas pdfToolbox 9

Tiling by number

An additional way to tile the document is by defining the
number of tiles vertically and horizontally.
The overlap can be defined in the same way as described
above.

Large format Tiling 16

New in callas pdfToolbox 9

Add borders

Adds whitespace around the document by enlarging
the existing visible area (defined by the CropBox).
This can be useful for producing large format products
like Roll Up Banners

Available settings

The margin to be added can be defined for all 4 edges of the
document. The used unit for these values can be chosen as
well.

By activating "Add fold outline", the former size of the page
will be marked by an outline, which allows cutting or posi-
tioning during production afterwards.
The line width, creation as a spot color or separating this out-
line on a layer can be optionally activated as well.

Large format Add borders 17

New in callas pdfToolbox 9

Extend for Roll Up Banner

For adding space to prepare the PDF (which has the right di-
mension) for a Roll Up Banner, just enter the required values.
Press "Execute" afterwards.

Large format Add borders 18

New in callas pdfToolbox 9

Extended result PDF

The file gets enlarged by the defined values.

Large format Add borders 19

New in callas pdfToolbox 9

Fold outline on a layer

As the "Add fold outline" was activated, the former page size
became outlined. Causes by "Create on layer" this outline is
placed on a layer, so it can be switch on or off easily.

Large format Add borders 20

New in callas pdfToolbox 9

Add bleed

If a PDF has been created without bleed, or if the bleed
is not sufficient, generating bleed out of page content
is needed to avoid register problems.
To solve this task, pdfToolbox offers a variety of meth-
ods to add bleed from page content:

• Mirror content as image
• Repeat last pixel as image
• Mirror page objects

It is possible to define the width of the bleed per edge.
The different methods can even become combined
when using this feature as a Fixup.

Mirror content as image

Using the "Mirror as image" option will create an image for
each edge (and if selected: corner) at the TrimBox from the

Large format Add bleed 21

New in callas pdfToolbox 9

content. This image will be place mirrored outside of the
TrimBox.
The red rectangle shows a good example of the effect of this
method.

Repeat last pixel as an image

The "Repeat last pixel as an image" method is rendering a
thin strip inside the TrimBox and creates a wider image out of
this last visible strip. This will result in an image, which
"smears" out the last used color inside of the TrimBox out-
side as the bleed.

Large format Add bleed 22

New in callas pdfToolbox 9

Mirror page objects

Yet another approach is to use all of the page objects, dupli-
cate them (four times), flip them (two of them horizontally,
the other two vertically), and then append them one by one
to each of the four sides of the page. This will result in bleed
with the same rendering accuracy and rendering quality as
the page content itself. Different form what one may expect,
the impact on file size is minimal (the page objects are not
actually duplicated, but instead four references are created).
The only real downside is that both a PDF viewer as well as a
PDF output system will have to process – to a certain degree
– five times as much page content data. This can lead to
longer processing times during output, especially on systems
with relatively small amounts of working memory.

Large format Add bleed 23

New in callas pdfToolbox 9

Variables and
JavaScript: JavaScript

Variables and JavaScript: JavaScript 24

New in callas pdfToolbox 9

Taking variables to the next level

Variables have originally been introduced in 2009 in
pdfToolbox 4, and have proven to be a very flexible and
powerful instrument to develop efficient workflows.
Based on extensive feedback from our customers and
OEM partners, we have extended the way variables
work in pdfToolbox in several ways:

• More aspects of profiles, checks and fixups can be
handled through variables; for example, it is now
possible to turn checks on or off, change their
severity, or to use variables for check boxes and
pop-up menus

• Variables are now self contained data objects; this
is especially useful where the same variable is used
in more than one place; in the past, a pdfToolbox
user had to ensure that the same variable used in
more than one place was using the exact same con-
figuration string.

• Variables can now also be used as a step in a
Process Plan, such that the execution of the follow-
ing steps can depend on the evaluation of the vari-
able in this step.

• Beyond being a kind of an advanced placeholder
with predefined default values, variables can now
also be defined in the form of a JavaScript; this im-
plies the possibility to derive the value for a vari-
able from other variables, or from the metadata or
filename of the current PDF, or from result data
from a previous preflight check.

• Where JavaScript is used, internal variables can be
defined and used, without ever confronting a
pdfToolbox Desktop user with it.

• In the context of a pdfToolbox Profile, it is possible
to include a JavaScript that could for example do
preparatory calculations, or determine the value of
other variables depending on a document's meta-
data, filename, or other information.

Variables and JavaScript: JavaScript Taking variables to the next level 25

New in callas pdfToolbox 9

The concept of "variables"

Variables as used in pdfToolbox 9 are small information ob-
jects that come in two flavors:

• simple value variables
• script based variables

Each data object for a variable has four properties:

• a key (for use when configuring values in Process Plans,
Profiles, Checks or Fixups, and for working with variables
in JavaScript)

• a label (for use in the user interface, for example in the
"Ask at runtime" dialog)

• a value (either, in the case of a simple variable, a default
value to be used unless a different value is provided at
runtime, or a JavaScript that once evaluated will return
the applicable value)

• an internal unique ID (not displayed in the user interface,
but can be retrieved using JavaScript)

A variable can be used in almost any context where some-
thing can be configured in any of the following:

• Process Plans
• Steps in Process Plans
• Profiles
• Checks
• Fixups
• Checks used as filters in Fixups

The places where variables can be used are for example:

• name and description fields
• fields of type check box, popup, or input fields for text or

numbers
• severity for Checks and Fixups inside a Profile
• ON/OFF switch for Checks and Fixups inside a Profile

Variables make it possible to determine some information
that is useful when executing a Process Plan, Profile, Check
or Fixup at the time of execution, instead of having to prede-
fine such information beforehand. A simple example would
be a Check that analyses the minimally required resolution
of images. Sometimes 300 ppi are needed (for high quality

Variables and JavaScript: JavaScript Taking variables to the next level 26

New in callas pdfToolbox 9

printing, in other cases 72 ppi or 96 ppi could be sufficient
(when sharing a PDF via email). While it is possible to config-
ure three separate checks for 300 ppi, 96 ppi and 72 ppi, it is
much more elegant to only define a single Check, where a
place holder is used which is then filled when executing the
Check. Not only is just one Check needed instead of three, it
is also absolutely easy to use the same Check for altogether
different required minimal resolutions, like 144 ppi or 450 ppi
or any other value.

Thus, the major benefit of variables is the option to postpone
the decision, which values to use for processing PDFs, to the
moment when processing is started. This includes the possi-
bility to choose different values each time. Furthermore, the
introduction of JavaScript makes it possible to derive further
information based on information provided at runtime or
based on information through metadata, including the op-
tion to use relative complex calculations.

Variables in the desktop, server, and command
line SDK versions of pdfToolbox 9

In principle not much has changed here in comparison to
pdfToolbox versions before version 9. In the desktop version
of pdfToolbox 9 (whether Acrobat plug-in or standalone),
when running a Process Plan, Profile, Check or Fixup that
contains one ore more variables for which input is needed,
the "Ask at runtime" dialog will open and will request that
user enters values as desired (or leaves the pre-populated de-
fault values as they are). For the server and command line
versions, the values have to be provided as command line pa-
rameters or by means of a configuration file.

What has changed - mostly due to the extended capabilities -
are the following:

• Values entered by the user have to be suitable for the
type of field for which they are to be used; for example, it
is now impossible to provide arbitrary text when the ex-
pected value is a number.

• Additional information is provided to the user in the "Ask
at runtime' dialog in case there is a problem with the val-
ue(s) entered.

• Using a special option in the "Ask at runtime" dialog, it is
possible to analyze the way variables are collected or cal-

Variables and JavaScript: JavaScript Taking variables to the next level 27

New in callas pdfToolbox 9

culated; this not meant to be used by the typical user, but
rather by the person in charge of developing advanced
uses of variables – which could become quite complex in
Profiles that use variables in many places in Checks and
Fixups.

How powerful is the JavaScript engine in
pdfToolbox 9?

The JavaScript engine in pdfToolbox 9 is based on Google's
V8 JavaScript engine (see https://developers.google.com/v8/
for more information). Those who work with JavaScript in
browsers will know, that only the sky is the limit there. One
could carry very extreme tasks using JavaScript inside a
browser, including reaching out to all kinds of services and
data sources over the internet.

The way JavaScript functionality is provided inside pdfTool-
box 9 takes a slightly different approach:

• pdfToolbox 9 (through the underlying V8 engine) sup-
ports the complete set of JavaScript features as defined
in ECMAScript is specified in ECMA-262, 5th edition (see
http://www.ecma-international.org/publications/stan-
dards/Ecma-262-arch.htm)

• several pdfToolbox specific internal data objects, in order
to allow for access to document metadata, filename, and
so on; and to store data in a place shared across Process
Plans, Profiles, Checks and Fixups through one execution
context.

• The pdfToolbox 9 JavaScript engine comes with a power-
ful runtime evaluation architecture, that ensures that
variables relying on each other do actually work consis-
tently without the user having to meticulously take care
of such dependencies.

• pdfToolbox 9 does not offer any access to outside data
(except where provided through pdfToolbox specific in-
ternal data objects), whether to the local file system, or to
web services or data accessible "over the web"

• pdfToolbox also does not offer the possibility to reference
JavaScript files, as is often used to provide JavaScript li-
braries; where library-like functionality is needed, suit-
able JavaScript code must be included in the JavaScript

Variables and JavaScript: JavaScript Taking variables to the next level 28

New in callas pdfToolbox 9

https://developers.google.com/v8/
http://www.ecma-international.org/publications/standards/Ecma-262-arch.htm),
http://www.ecma-international.org/publications/standards/Ecma-262-arch.htm),
http://www.ecma-international.org/publications/standards/Ecma-262-arch.htm),

snippet associated with a variable, or with the Profile
JavaScript.

Variables and JavaScript: JavaScript Taking variables to the next level 29

New in callas pdfToolbox 9

Variables and JavaScript: Variables
in general

Variables can be assigned to everything

Variables can be defined in several places throughout the
Profile/Checks/Fixups editor. Variables may be assigned to
virtually every control including the severity for a check:

• Text input fields
• Checkboxes
• Pop Up fields
• Severities
• On/Off switch in order to enable/disable Checks or Fixups

in a Profile

Variables and JavaScript: JavaScript Variables and JavaScript: Variables in general 30

New in callas pdfToolbox 9

Assign a variable

When you click on a variable icon in the pdfToolbox Profiles/
Checks/Fixups editor, you will see a list of all variables that
are present in the system. Variables that are used in the cur-
rent context (e.g. the current Profile) appear at the top. You
may pick any of the existing variables, create a new one or
edit one that is already assigned.

Deleting a variable is currently only possible in the Library
Manager and only if the variable is not used. Whether or not a
variable is used can also be seen there.

Variable Editor: Creating a new variable

You have to define a key for the variable, an optional Name
that will be used in a pdfToolbox Desktop dialogue and the
default value. If you use a Simple value Variable these are the
most important ones, but you may in addition define Con-
straints (this is explained in a later step in this chapter). For a
Script Variable you may use the help that is available via the

Variables and JavaScript: JavaScript Variables and JavaScript: Variables in general 31

New in callas pdfToolbox 9

info button, the JavaScript help has the same content as the
respective chapter in this manual.

Variables and JavaScript: JavaScript Variables and JavaScript: Variables in general 32

New in callas pdfToolbox 9

For Checkboxes and Pop ups you can use the info
button to pick one of the possible default values

Variables and JavaScript: JavaScript Variables and JavaScript: Variables in general 33

New in callas pdfToolbox 9

Constraints

Constraints can be defined by using the "Limit input values to
specific values" checkbox in the variable editor. In this con-
text the expected value type of the variable is important
which is indicated above of input field for the default value.

You may in addition specify:

• whether a Browse button shows up when executed in
pdfToolbox Desktop that allows a user to pick a file from
the system (e.g. to load an ICC profile)

• whether the entries in Values are used as list, in which
case a Pop up would show up in the dialogue of pdfTool-
box Desktop or as a range. In the latter case invalid values
that are out of range will be indicated by a red cross.

Variables and JavaScript: JavaScript Variables and JavaScript: Variables in general 34

New in callas pdfToolbox 9

Constraints - Range specifics

When you are using the Range option, two values will define
a range and a single value defines a single allowed value. In
this example 100-300 and 500 are permitted values (which
usually does not make sense).

Variables and JavaScript: JavaScript Variables and JavaScript: Variables in general 35

New in callas pdfToolbox 9

Constraints for Pop up fields

You may again use the info button in order to pick possible
values for the Pop up. In this example this is done for a sever-
ity, but it works in the same way for other Pop up fields.

Profile Script Scope

It is possible to set a value for a variable in other script vari-
ables by means of Javascript. And this can and will usually be
done on Profile level. In turn it only makes sense to use Script
values at this place. Please go to the pdfToolbox Javascript in
variables documentation for further information.

Variables and JavaScript: JavaScript Variables and JavaScript: Variables in general 36

New in callas pdfToolbox 9

Variables in Processplans

It is possible to define a variable as a step in a Process Plan.
This will work similar to a Variable on Profile level in does on-
ly makes sense and work for Script variables.

Variables and JavaScript: JavaScript Variables and JavaScript: Variables in general 37

New in callas pdfToolbox 9

The "Ask at runtime" in pdfToolbox Desktop

In pdfToolbox Desktop a dialogue shows up, when a Profile/
Check/Fixup is executed that has editable variables, i.e. vari-
ables that are not calculated by means of Scripts. If you want
to see the dialogue for a Profile/Check/Fixup that only has
calculated variables you will have to add one additional vari-
able that is not calculated.

Script variables are hidden as long as no evaluation errors
had occurred. If an evaluation error has occurred the OK but-
ton is disabled. Details can be displayed by clicking the “In-
spect variable” checkbox. It allows you to analyze the struc-
ture of all variables in the given context.

Variables and JavaScript: JavaScript Variables and JavaScript: Variables in general 38

New in callas pdfToolbox 9

Variables using JavaScript:
Overview

Where can JavaScript variables be used

Script variables can be used wherever Simple variables can
be used:

• In Checks or Fixups for text input fields, pop ups, check-
boxes

• Severities of checks
• On/Off variables for Checks and Fixups

It in addition is possible to use Script variables (but not Sim-
ple variables):

• in a Profile as Profile script
• as a Process Plan step

In all places where Simple or Script variables can be used,
the variable editor allows you to switch between both by
means of a radio button. After a variable has been saved as
Simple variable is is possible at any time to convert it into a
Script variable here. However, it is not possible to convert a
Script variable into a Simple variable. The reason is that this
could potentially lead to problems when the same variable
would be used in a place where only a Script variable is al-
lowed.

Variables and JavaScript: JavaScript Variables using JavaScript: Overview 39

New in callas pdfToolbox 9

Assigning a variable to a pdfToolbox Desktop
control

Wherever you see the variable icon in pdfToolbox Desktop
you can click on it in order to assign a variable from a list of
all variable keys that are defined in the current Library to the
respective control.

Variables and JavaScript: JavaScript Variables using JavaScript: Overview 40

New in callas pdfToolbox 9

Creating or modifying a JavaScript variable

You can create a new variable (either as Simple or as Script
variable) and assign it; or you open the variable editor in or-
der to modify a variable that has already been assigned.

The list of variables in the pop up shows those variables that
are already used in the current context (Profile, Check, Fixup)
first and then all variables in the current Library. Script vari-
able keys are followed by "(JS)" to indicate that these are
JavaScript variables. After assigning a variable to a pdfTool-
box Desktop control the variable key is displayed in the re-
spective field (for text input fields or pop ups) or next to it (for
checkboxes). Simple variables are displayed as <Simple vari-
able>, Script variables as {Script variable}.

In order to un-assign a variable from a control you simply
have to remove it from a text input field, to pick any other
value in a pop up or to check/uncheck a checkbox.

Variables and JavaScript: JavaScript Variables using JavaScript: Overview 41

New in callas pdfToolbox 9

Creating or modifying a JavaScript variable:
Important differences to pdfToolbox versions
earlier than version 9

In pdfToolbox versions earlier than version 9 it was possible
to copy a variable out of a pdfToolbox Desktop control and
insert it into another control in order to assign it to both con-
trols. This is not possible in pdfToolbox 9. You have to select
the variable key from the variable pop up in the second or
any further control.

From pdfToolbox 9 on it is no more possible to make two
variable occurrences using the same value simply by using
the same variable name ("key"). Variables are only then the
same if any additional occurrence is selected from the vari-
able pop up in pdfToolbox Desktop. Otherwise two variables
using the same key would be present which would at least be
confusing when evaluated.

But: It would be difficult to resolve such conflicts when a Pro-
file is imported as kfpx file, if the imported Profile uses the
same variable key as a variable that is already present in the
current Library. Therefore in such cases internally a variable
merge process takes place that merges all variables that are
defined in the very same way (key, default value and label)
into a single variable.

Defining a variable in a script

If you want to define a variable in a script that is not used in
any pdfToolbox Desktop control you may do so by writing at
the top of your script:

appapp.r.requirequires("myves("myvar")ar")

myvar will then be created and show up in the Ask at Run-
time dialogue or in --listvariables on command line. If you al-
so want to set a default value and a display name (label) you
can write:

appapp.r.requirequires("myves("myvar"ar",100,,100,"Input a v"Input a value falue for myvor myvar")ar")

Variables and JavaScript: JavaScript Variables using JavaScript: Overview 42

New in callas pdfToolbox 9

Setting the value for a Script variable in it's own
script

A Script variable is populated with the value that is the result
of the last statement in the script. So, if a Script variable
would end with a statement like "pdfToolbox" it would have
this string as its value, independent from what code has been
executed beforehand. A return statement as in a JavaScript
function is neither required nor would it have any effect.

Setting the value for another Script variable with
app.vars

It is possible to set a value for another variable in JavaScript
code by means of an app.vars.<variable key> statement. The
app.vars object is a pdfToolbox object that is available
throughout the context (Process Plan, Profile, single Check,
single Fixup) in which processing takes place. It allows you to
store and retrieve variables within this context:

appapp..vvarars.myvs.myvar = "pdfar = "pdfTToolbooolbox";x";

or:

loclocalvalvar = appar = app..vvarars.myvs.myvar;ar;

are valid statements. The first statement would create the
variable "myvar" if not already present in app.vars. You may
e.g. use app.vars to set a value for a variable on Profile level,
which is then used in a Fixup in the Profile.

In order to set a value for a Simple variable you can use
app.vars.<variable key>. A list of all variables that are present
in the current Library can be displayed in the Script editor by
using [<command>-2].

Setting a value for a variable via JavaScript code should only
take place on Profile level or as a "Variable" step of a Process
Plan. The reason is, that it is not defined in which order
scripts on "lower levels" (Checks, Fixups, Severities, On/Off)
are executed during runtime and therefore the result of e.g.
one Fixup modifying a variable in another Fixup is undefined.

Variables and JavaScript: JavaScript Variables using JavaScript: Overview 43

New in callas pdfToolbox 9

You also have access to variables in app.vars in the "Place
content on page" fixup. This fixup allows you to place content
defined in HTML templates that may internally use
JavaScript. If you want to read, write or create a variable in
app.vars from that JavaScript you have access to all of them
in the array

ccals_doc_infals_doc_infoo..documentdocument..vvariablesariables

Using variables that are defined elsewhere

In order to use the value of a variable in JavaScript it can be
accessed using the app.vars object with the key of the vari-
able as already described above: app.vars.<variable key>. If
the other variable is defined in a Script variable it has to be
defined using app.vars there as well. If the other variable is a
Simple variable it is always present in the app.vars object.

When retrieving variable values from app.vars it is important
to know that all variables are stored there as strings. With
simple value types you will most probably not even notice
this, because a string is automatically converted if necessary
and possible, e.g. into a number. However, if you are working
with more complex variable types like with arrays or objects
there will obviously be differences and you might have to
work around this limitation.

In complex profiles - actually when a Script variable is used in
another Script variable - app.requires("<variable key>") has
to be defined at the top of the referencing Script, in addition
to the actual reference with app.vars. This is required in order
to make sure that the referenced variable is evaluated before
the referencing variable is calculated. So, it is good practice
to at the top of each Script, list all variables which are not de-
fined in the Script itself in app.requires entries.

Profile level scripts versus Check/Fixup level
scripts

When you "design" a profile with JavaScript based calcula-
tions you have to decide whether you want to put the "intelli-
gence" (the calculations) into Fixups and Checks that actual-
ly apply things to the PDF or into a Profile level script and set

Variables and JavaScript: JavaScript Variables using JavaScript: Overview 44

New in callas pdfToolbox 9

values for the variables that are then used in Fixups and
Checks from there.

Example: Downsample images in pdfToolbox usually requires
to set up three fixups: for color images, grayscale images and
for bitmap images. Each of the fixups has two input fields
that you may want to make variable: The destination resolu-
tion and the minimum resolution for an image to be down-
sampled. Assume that you want to downsample color and
grayscale images to the same resolution. Images should be
downsampled if the original image resolution is 1.5 times as
high as the destination resolution. Destination resolution for
bitmap images should be 3 times as high as for color images,
with the same relative minimum resolution (effectively 4.5
times color images' minimum resolution). You may now ei-
ther make the destination resolution for color images a Sim-
ple variable, e.g. "dest_col_res" and make any of the other 5
variables a Script variable that uses dest_col_res and calcu-
lates the actual value. Or you set up a Profile level script, do
all the calculations there and put the results into a bunch of
Simple variables that you assign to each of the 6 variable in-
put fields. (You will have to use app.vars in order to use vari-
ables throughout the Profile and in the second case you
would use app.requires to define a variable for the destina-
tion image resolution in the Profile script.)

Each of the two approaches has advantages:

• If you put the intelligence into Fixups and Checks it is eas-
ier to make it possible to use them as Single Fixups or
Checks, independent from the Profile.

• If you put the intelligence into the Profile it is usually easi-
er to see what a profile is actually doing and - even more
important - to maintain it in the future.

As a result and a rule of thumb it can be said, that it usually
makes sense to put as much intelligence into the Profile level
script. The more complex a Profile is, the more important is it
to follow this approach.

Variables and JavaScript: JavaScript Variables using JavaScript: Overview 45

New in callas pdfToolbox 9

The Script editor: User interface elements: Help

When the variable editor is switched into Script "mode", you
can find help with the info button on the upper right side of
the Script input field. You will find more information if you
click into the Script input field first. This gives you access to

• a general help text (this text) [<command>-0],
• a list of all pdfToolbox specific JavaScript objects and

methods [<command>-1],
• a list of all variables that are present in the current Li-

brary [<command>-2]
• useful code snippets [<command>-3].

Variables and JavaScript: JavaScript Variables using JavaScript: Overview 46

New in callas pdfToolbox 9

The Script editor: User interface elements: Value
type

Above of the info button you see the value type of the
pdfToolbox control to which the variable is currently as-
signed. This information is useful to know what type of result
is expected from your script.

The Script editor: User interface elements: Show
evaluation results

Variables and JavaScript: JavaScript Variables using JavaScript: Overview 47

New in callas pdfToolbox 9

Below the text input field you can switch "Show evaluation
results" on, which will help you to find out what the result of
your JavaScript code is.

It is important to remember that the result of JavaScript code
used in a variable is the result of the last statement. The only
exception is if invalid code is used, e.g. if a closing parenthe-
sis is missing, in which case you will see a "Syntax error" with
an explanation.

In order to modify evaluation you can simulate how a
JavaScript works different when used in a different "Con-
text": You may either load a PDF (it will not open in pdfTool-
box) to simulate how your script works on that PDF, e.g.
when you are using the PDF path inside of your script. Or you
switch between evaluation only for the script (in which case
values that are set via other variables in your context are not
evaluated) or evaluation within the context. All this informa-
tion is helpful for debugging your scripts.

A button at the right hand side indicates whether the result of
the script works in the current pdfToolbox control. If the re-
sult is "pdfToolbox" and you are using the variable for a text
input field you will see a green checkmark. However, if the
variable is used for an integer number field you will see a red
error cross. When you click on it you will read: ""pdfToolbox"
cannot be converted to integer".

The console window displays information that the JavaScript
sends to it. It can be used with console.log.

Variables and JavaScript: JavaScript Variables using JavaScript: Overview 48

New in callas pdfToolbox 9

Inspecting the variable structure in the Ask at
Runtime dialogue in pdfToolbox Desktop:
Activating the "debug view"

When you run a Process Plan, Profile, Check or Fixup in
pdfToolbox Desktop that uses variables you will see the "Ask
at Runtime" that allows for updating variable values. A
checkbox at the bottom of the dialogue allows the user to
"Inspect variables".

Variables and JavaScript: JavaScript Variables using JavaScript: Overview 49

New in callas pdfToolbox 9

Inspecting the variable structure in the Ask at
Runtime dialogue in pdfToolbox Desktop: The
"debug view"

If activated all calculated variables are displayed, not only
those ones that allow for user input. A "Script" indicator
shows values that cannot be modified in this dialogue be-
cause they are already calculated in the scripts. A button be-
hind the Script variable fields indicates whether there is a
type conflict, e.g. if the variable is used for a number field but
the value is a string that cannot be converted to a number. In
that case you will see a red cross. You may click on any of
those red cross buttons in order to see details for the prob-
lem.

The Ask at Runtime dialogue will only appear if a Profile/
Check/Fixup has at least one variable that does not already
have a value. If you want to enable the debug view in a Pro-
file/Check/Fixup in which all variables are set by means of
scripts, you will have to add at least one additional variable,
e.g. a Simple variable for that purpose.

Variables and JavaScript: JavaScript Variables using JavaScript: Overview 50

New in callas pdfToolbox 9

Inspecting the variable structure in the Ask at
Runtime dialogue in pdfToolbox Desktop: The
"debug view" info button

Next to each variable you will see an info button. Clicking on
this button allows for accessing information that is useful for
debugging purposes. A list of all variables that are defined in
the current context is displayed. (The content of the info win-
dow is actually the same for each of the info buttons, the on-
ly difference is that the control for the respective variable is
opened by default.) Each of these variables is followed by the
result that has been calculated for the respective variable. If
you open the triangle for a variable you see an entry "Vari-
ables" that shows details about how that variable has been
defined. Below are all contexts listed in which the respective
variable is used.

pdfToolbox specific JavaScript objects and
methods

pdfToolbox provides a number of objects and methods that
can be accessed in JavaScript variables. This includes infor-

Variables and JavaScript: JavaScript Variables using JavaScript: Overview 51

New in callas pdfToolbox 9

mation about the PDF, like its name or file path, the metada-
ta in the PDF and even results from a previous Check or Pro-
file. You can display a full list of all objects and methods by
using [<command>-1] when in the Script editor, select any of
the entries and insert them into your script.

A complete list of these objects and methods can also be
found in the chapter "Variables using JavaScript: pdfToolbox
objects and methods".

Variables and JavaScript: JavaScript Variables using JavaScript: Overview 52

New in callas pdfToolbox 9

Variables using JavaScript: pdfTool-
box objects and methods

This article provides an overview of all JavaScript ob-
jects and methods that are specific to pdfToolbox Vari-
ables. It is the same information that can be displayed
in the Script editor of pdfToolbox.

app Returns the global application object.

app.requires(key) Defines a variable key with default
value 0 that is required by the current script.
Example:
app.requires("myvar")

app.requires(key,value) Defines a variable key and its
default value that is required by the current script.
Example:
app.requires("myvar",10)

app.requires(key,value,label) Defines a variable key
and its default value and a display name (label) that is
required by the current script.
Example:
app.requires("myvar",10,"Input value for myvar")

app.name Returns the application name.

app.version Returns the application version string.

app.vars Returns the var objects containing all vari-
ables defined in the current context.

app.vars.varkey Returns the value of the variable
"varkey" if that exists in app.vars.
Example:
app.vars.varname

app.doc Retuns the doc object for the current PDF doc-
ument or 'undefined' if no PDF is open.

app.doc.info Returns the docinfo object containing all
document info entries of the current PDF document.

Variables and JavaScript: JavaScript Variables using JavaScript: pdfToolbox objects and methods 53

New in callas pdfToolbox 9

app.doc.path Returns the full platform dependent file
path of the current pdf document.

app.doc.documentFileName Returns the file name of
the current PDF document.

app.doc.numPages Returns the number of pages of the
current PDF document.

app.doc.getPageBox() Returns an array containing the
left, top, right and bottom coordinates of the TrimBox
of the first page in pt.

app.doc.getPageBox(pageBox) Returns an array con-
taining the left, top, right and bottom coordinates of
the specified page box of the first page in pt. 'pageBox'
must be one of "Art", "Bleed", "Crop", "Trim" and Me-
dia.
Example:
app.doc.getPageBox(Trim)

app.doc.getPageBox(pageBox,pageNumber) Returns
an array containing the left, top, right and bottom co-
ordinates of the specified page box of the specified
page in pt. 'pageBox' must be one of Art, Bleed, Crop,
Trim and Media.
Example:
app.doc.getPageBox(Trim,0)

app.doc.getPageBox(pageBox,pageNumber,precision)
Returns an array containing the left, top, right and bot-
tom coordinates of the specified page box of the speci-
fied page with the given precision in pt. 'pageBox'
must be one of Art, Bleed, Crop, Trim and Media.
Example:
app.doc.getPageBox(Trim,0,2)

app.doc.getPageRotation() Returns the page rotation
of the first page.

app.doc.getPageRotation(pageNumber) Returns the
page rotation of the specified page.
Example:
app.doc.getPageRotation(0)

Variables and JavaScript: JavaScript Variables using JavaScript: pdfToolbox objects and methods 54

New in callas pdfToolbox 9

app.doc.pages Returns an array with page objects for
the current PDF document.

app.doc.pages[i].inks Returns an array of inks used by
on the page.
Example:
app.doc.pages[0].inks

app.doc.pages[i].inks[j].name Returns the name of the
ink.
Example:
app.doc.pages[0].inks[0].name

app.doc.pages[i].getPageBox() Returns an array con-
taining the left, top, right and bottom coordinates of
the TrimBox of the specified page box in pt.
Example:
app.doc.pages[0].getPageBox()

app.doc.pages[i].getPageBox(pageBox) Returns an ar-
ray containing the left, top, right and bottom coordi-
nates of the specified page box in pt. 'pageBox' must
be one of Art, Bleed, Crop, Trim and Media.
Example:
app.doc.pages[0].getPageBox(Trim)

app.doc.pages[i].getPageBox(pageBox,precision) Re-
turns an array containing the left, top, right and bot-
tom coordinates of the specified page box with the giv-
en precision in pt. 'pageBox' must be one of Art, Bleed,
Crop, Trim and Media.
Example:
app.doc.pages[0].getPageBox(Trim,2)

app.doc.pages[i].getPageRotation() Returns the page
rotation of the page.

app.doc.xmp Returns a XMP object for the document
XMP metadata of the current PDF document.

app.doc.xmp.getProperty(ns,property) Returns the
value of the specified property in the specified name-
space or 'undefined' if the property does not exists.
'ns' must be the full namespace uri. For namespaces
defined in the XMP spec the predfeined namespace

Variables and JavaScript: JavaScript Variables using JavaScript: pdfToolbox objects and methods 55

New in callas pdfToolbox 9

prefix can be used as well.
Examples:
app.doc.xmp.getProperty(http://purl.org/dc/ele-
ments/1.1/,format)
app.doc.xmp.getProperty(dc,format)

app.doc.metadata Returns the document XMP metada
as plain XML

app.doc.result Returns a preflight result object or 'un-
defined' if no preflight result is available. A preflight re-
sult is only available inside process plans if a profile or
check was executed in a previous step.

app.doc.result.hits Returns information about a previ-
ous preflight result.

app.doc.result.hits.numErrors Returns the number of
errors of a prvious preflight result.

app.doc.result.hits.numWarnings Returns the number
of warnings of a prvious preflight result.

app.doc.result.hits.numInfos Returns the number of
info hits of a prvious preflight result.

app.doc.result.checks Returns an array of Check ob-
jects for the previous preflight result.

app.doc.result.checks.length Returns the lenght of the
array of Check objects for the previous preflight result.

app.doc.result.checks[i].id Returns the check ID of the
specified check for the previous preflight result.
Example:
app.doc.result.checks[0].id

app.doc.result.checks[i].name Returns the display
name of the specified check of the previous preflight
result.
Example:
app.doc.result.checks[0].name

app.doc.result.checks[i].severity Returns the severity
of the specified check for the previous preflight result:
1: Info, 2: Warning, 3: Error.

Variables and JavaScript: JavaScript Variables using JavaScript: pdfToolbox objects and methods 56

New in callas pdfToolbox 9

Example:
app.doc.result.checks[0].severity

app.doc.result.checks[i].numHits Returns the number
of hits of the specified check for the previous preflight
result.
Example:
app.doc.result.checks[0].numHits

app.doc.result.checks[i].pageNumbers Returns an ar-
ray of page numbers (starting with 0) for pages that
had hits with the specified check for the previous pre-
flight result.
Example:
app.doc.result.checks[0].pageNumbers

Variables and JavaScript: JavaScript Variables using JavaScript: pdfToolbox objects and methods 57

New in callas pdfToolbox 9

Extracting information from an XML
Report file via XPath (9.1)
The pdfToolbox specific "app.doc.result.reports" object re-
turns an array of reports that have been generated in a previ-
ous Process Plan step. It can be combined with file.read
which would read an XML report into a string and to then
convert that string back into an XML object with xml=new
XML().

Then xml.registerNamespace allows for associating the XML
Report namespace, which is
"http://www.callassoftware.com/namespace/pi4" for
pdfToolbox 9 XML Reports with a abbreviation.

Finally xml.path can be used to read information from the
XML object via an XPath expression.

The example below extracts the information about what
plates are used by a PDF file from the XML report and writes
that information into a variable "text". In the Process Plan ex-
ample which is attached to this article the value of this vari-
able is then used in a later step to write that information onto
all PDF pages.

//Get first report, assign it to "file", read it's content into a string and
//convert that string into an XML object
app.vars.report = app.doc.result.reports[0];
var file = new File(app.doc.result.reports[0]);
var string = file.read();
var xml = new XML(string);

//Register the XML namespace with p
xml.registerNamespace("p","http://www.callassoftware.com/namespace/pi4");

//Get the list of platenames
app.vars.plates = xml.xpath("//p:report/p:document/p:doc_info/p:platenames/
p:platename/text()");

//Write the list of platenames into a variable that is available throughout the
execution context
app.vars.text = app.vars.plates;

Variables and JavaScript: JavaScript Extracting information from an XML Report file via XPath (9.1) 58

New in callas pdfToolbox 9

http://www.callassoftware.com/namespace/pi4

Evaluate_XML_Report_-_Place_Plate_names_extracted_from_XML_report.kfpx

Variables and JavaScript: JavaScript Extracting information from an XML Report file via XPath (9.1) 59

New in callas pdfToolbox 9

https://s3.amazonaws.com/screensteps_live/attachment_assets/assets/000/212/011/original/Evaluate_XML_Report_-_Place_Plate_names_extracted_from_XML_report.kfpx?1477685917

Using an external JSON jobticket file
(9.1)
This example shows how processing information can be tak-
en from a jobticket file, which has been saved next to the cur-
rently processed PDF. The jobticket file uses JSON and does
in this example only have one key value pair.

The download contains a Profile with a Process Plan, a sam-
ple PDF and a JSON jobticket.

The first step in the Process Plan is a Variable that that tries
to read the jobticket and stores one of the values in it into the
variable "text". It does the same for the text size which is dif-
ferent for regular content and for an error message that is
saved into "text" instead if reading the jobticket fails. This
variable is made available via app.vars to the next step which
takes it and prints its contents onto the PDF page.

This is the variable from the first step.

debug = true;
function buildSidecarFileName(extension)
{

var path = app.doc.path.split(app.env.pathDelimiter);
if (debug) console.log("buildSidecarFileName 1 Path: " + path);

var name = path[path.length-1].split(".");
if (debug) console.log("buildSidecarFileName 2 Name: " + name);

name.pop();
if (debug) console.log("buildSidecarFileName 3 Name: " + name);

name.push(extension);
if (debug) console.log("buildSidecarFileName 4 Name: " + name);

path.pop();
if (debug) console.log("buildSidecarFileName 5 Path: " + path);

path.push(name.join("."));
if (debug) console.log("buildSidecarFileName 6 Path: " + path);

path = path.join(app.env.pathDelimiter)
if (debug) console.log("buildSidecarFileName 7 Path: " + path);

return new File(path);
}
try

Reading_a_jobticket_from_a_sidecar_file_(JSON).zip

Variables and JavaScript: JavaScript Using an external JSON jobticket file (9.1) 60

New in callas pdfToolbox 9

https://s3.amazonaws.com/screensteps_live/attachment_assets/assets/000/212/629/original/Reading_a_jobticket_from_a_sidecar_file_%28JSON%29.zip?1477843725

{
app.vars.sidecar = JSON.parse(buildSidecarFileName("json").read());

if (debug) console.log("main 1 The jobticket file: " + JSON.
stringify(app.vars.sidecar));

app.vars.text = app.vars.sidecar.msg;
app.vars.fontsize = 25;
app.vars.ok = true;

}
catch(x)
{

app.vars.text = "ERROR: Could not read message from sidecar file: " + x;
app.vars.fontsize = 20;
app.vars.ok = false;

}
app.vars.ok;

The first call sets the debug variable to true. This allows for
reading the current state of processing in the Console win-
dow of the JavaScript editor (if "Show evaluation results" is
on). This is the output for "testimonial Mercedes.PDF".

buildSidecarFileName 1 Path: ,Users,d.seggern,Doku,Reading a jobticket from a
sidecar file (JSON),testimonial Mercedes.pdf
buildSidecarFileName 2 Name: testimonial Mercedes,pdf
buildSidecarFileName 3 Name: testimonial Mercedes
buildSidecarFileName 4 Name: testimonial Mercedes,json
buildSidecarFileName 5 Path: ,Users,d.seggern,Doku,Reading a jobticket from a
sidecar file (JSON),
buildSidecarFileName 6 Path: ,Users,d.seggern,Doku,Reading a jobticket from a
sidecar file (JSON),testimonial Mercedes.json
buildSidecarFileName 7 Path: /Users/d.seggern/Doku/Reading a jobticket from a
sidecar file (JSON)/testimonial Mercedes.json
main 1 The jobticket file: {“msg”:”This string came from a sidecar file!”}

The Console output shows how the path for the jobticket file
is built from the path of the PDF file, in the lines starting with
"buildSidecarFileName" and the contents of the jobticket
file, which is rather short in this example.

Variables and JavaScript: JavaScript Using an external JSON jobticket file (9.1) 61

New in callas pdfToolbox 9

Defining variables using
app.requires with closed choice of
allowed values (9.1)
The app.requires object can be used for two reasons:

To explicitly define dependencies in a Script variable from
another variable. That should always be done when variables
are used e.g. in Checsk or Fixups where it is important that a
certain order is used when evaluation the variables.

The other more important use case is to define a variable
within a JavaScript variable. This will be described in this ar-
ticle.

The example is variant of the "Viewing Distance related
checks" Profile that you will find in pdfToolbox in the
"Shapes, Variables, JavaScript, Place content" library.

The predefined Profile has a Profile level JavaScript variable
that starts with

app.requires("input_viewingdistance",10,"Viewing distance [meter]");
app.requires("input_scalingfactor",100,"Scaling factor for PDF [%]");

The two app.requires calls define two variables, "in-
put_viewingdistance" and "input_scalingfactor" , with de-
fault values (second parameter) and a label text that is used
when the Profile is executed in pdfToolbox Desktop (third pa-
rameter).

With pdfToolbox 9.1 it is possible to define a list of possible
values.

app.requires("input_viewingdistance",10,"Viewing distance
[meter]",[10,12,14,18,20]);

If you want to only allow certain viewing distance values for a
variable that is defined using app.requires you can use a
fourth parameter that takes an array of values.

Viewing_Distance_related_checks.kfpx

Variables and JavaScript: JavaScript Defining variables using app.requires with closed choice of allowed values (9.1) 62

New in callas pdfToolbox 9

https://s3.amazonaws.com/screensteps_live/attachment_assets/assets/000/212/634/original/Viewing_Distance_related_checks.kfpx?1477845570

(For variables that are defined via the variable pop up you
can do the same by using the "Limit input values to specific
values" option.)

Variables and JavaScript: JavaScript Defining variables using app.requires with closed choice of allowed values (9.1) 63

New in callas pdfToolbox 9

Using "trigger" values to adjust pro-
cessing in a Process Plan (9.1)
pdfToolbox 9.1 lets you access trigger values via a JavaScript
object.

Trigger values are values that pdfToolbox reports back for ob-
jects that are identified by a check. The type of value corre-
sponds to the check property that is used. E.g. for a check
that finds all image objects with an image resolution below
300 ppi the trigger value reports the actual image resolution
for each such image. For a check that finds objects that are
close to TrimBox the trigger value has the actual distance be-
tween any such object and the TrimBox. The examples below
use these two check properties and their trigger values to ad-
just processing:

• List images with lowest resolution per page (uses trigger
values)
Uses the image resolution trigger values and prints on
each page of a PDF file the lowest resolution that is used
by an image on that page.

• Use trigger values to calculate the width for page mirror-
ing for bleed creation
Uses the smallest distance between a text object and the
TrimBox to define the width for mirroring page content.
That makes sure that text objects do not show up in the
bleed. It does this in a loop until there is no text closer
than 3 mm to the mirrored page content.

The download contains kfpx Process Plans for the two exam-
ples as well as a simple demo file that can be used to try
them out.

List images with lowest resolution per page (uses
trigger values)

This Process Plan runs in a loop. The flow chart below gives
an overview about how processing takes place in the 5 steps

Trigger_value_example.zip

Variables and JavaScript: JavaScript Using "trigger" values to adjust processing in a Process Plan (9.1) 64

New in callas pdfToolbox 9

https://s3.amazonaws.com/screensteps_live/attachment_assets/assets/000/229/894/original/Trigger_value_example.zip?1479294772

of the Process Plan and how that makes sure that each page
is processed separately.

Use trigger values to calculate the width for page
mirroring for bleed creation

The 6 steps of this Process Plans are:

1. Set ArtBox to TrimBox
This is done to "remember" the TrimBox since that has to
be modified during processing.

2. Check: Text is closer than 3 mm inside to TrimBox
Finds all text objects that are so close to TrimBox that
they would be mirrored by a bleed generation fixup.

3. Mirror page into bleed with a width that text is not mir-
rored
The width of bleed is defined by using a Script Variable
"width_of_bleed". That first copies
app.doc.result.checks[0].hits into a local Variable. It then
generates an array variable "loc_triggerarray" into which
all trigger values are written. Finally Math.min.apply is
used to determine what is the smallest distance.

Variables and JavaScript: JavaScript Using "trigger" values to adjust processing in a Process Plan (9.1) 65

New in callas pdfToolbox 9

4. Then the TrimBox is set to the new CropBox because that
makes it easier to find out whether we already have gen-
erated enough bleed.
After that processing goes back to the Check in step 2. If
by then there is no text that is close to the (new) TrimBox
(that at the same time is the CropBox) processing goes
forth to step 5, otherwise the procedure above is repeat-
ed.

5. Processing get to here only if there is no text closer than 3
mm to TrimBox. It sets the TrimBox back to the ArtBox
which was the original TrimBox of the file after step 1.

6. Finally the ArtBox that was only used temporarily has to
be removed.

Variables and JavaScript: JavaScript Using "trigger" values to adjust processing in a Process Plan (9.1) 66

New in callas pdfToolbox 9

Debugging JavaScript Variables (9.1)
pdfToolbox provides features that are designed specifically
to make debugging of Script Variables easier:

• Console
• Serialisation of pdfToolbox JavaScript objects
• Variable values are listed when "Log Profile Execution" is

active

Console

The Console is available below the Script Editor if "Show
evaluation result" in enabled.

It works in the same way as in other JavaScript editors.

Since JavaScript "snippets" may be used at various places in
a Profile it is sometimes required to temporarily copy code
from somewhere else into the first lines of the Script Variable
you are currently working on to make sure that the Variable
has the same information as when it will be used in the Pro-
file context.

Variables and JavaScript: JavaScript Debugging JavaScript Variables (9.1) 67

New in callas pdfToolbox 9

In the example above the check that would fill the
app.doc.result.checks[0].hits array has to be manually per-
formed before the code in this Variable can be debugged. On-
ly then the variable "loc_triggerarray" has a meaningful val-
ue. It is printed to the Console via console.log using "pretty
printing" with the optional parameters null,"\t".

Serialisation of pdfToolbox JavaScript objects

In order to access information in any of the pdfToolbox
JavaScript objects you may need to visualise the structure of
these sometimes complex objects. The most complex object
is the app object since that is the parent object for all other
more specific objects.

This and all other pdfToolbox JavaScript objects can be seri-
alised by the JSON.stringify function, if used with the option-
al parameters null,"\t" they are formatted nicely.

This screenshot shows parts of the app object after that has
been output via console.log(JSON.stringify(app,null,"\t"))
and copied from the Console into the Sublime editor. The

Variables and JavaScript: JavaScript Debugging JavaScript Variables (9.1) 68

New in callas pdfToolbox 9

part above shows the app.doc.result.checks part with hits
and their trigger values.

Variable values listed in a logfile created via Log
Profile Execution

If you are using Script Variables in a Process Plan you may
need to know how Variable values are changed throughout
processing. You enable logging via the options menu in the
pdfToolbox main window.

If switched on a logfolder will be created that amongst other
things includes a log file "process.log". The other contents of
this folder are explained in further detail in a different article
of this documentation: http://help.callassoftware.com/m/
pdftoolbox9-en/l/656888.

All Variables that are stored in app.vars so that they are avail-
able throughout a Process Plan are listed for each of the
steps of the Process Plan with their current values.

Variables and JavaScript: JavaScript Debugging JavaScript Variables (9.1) 69

New in callas pdfToolbox 9

http://help.callassoftware.com/m/pdftoolbox9-en/l/656888
http://help.callassoftware.com/m/pdftoolbox9-en/l/656888

This screenshot shows that the variable "hitarray" had two
entries in step 3 and was empty in step 4. (The empty lines
before, between and after these two steps have been added
to make the example more readable.)

Variables and JavaScript: JavaScript Debugging JavaScript Variables (9.1) 70

New in callas pdfToolbox 9

Shapes

Shapes 71

New in callas pdfToolbox 9

Shapes: An overview

Shapes are a new way to use existing content or page
information and either derive new content or clip the
existing content on a page.

This can come in handy in number of scenarios, e.g.
when:

• adding white background to be printed behind the
page content, but not in areas where nothing is
printed

• adding partial varnish on certain objects
• creating a dieline based on page content or page

geometry
• clipping page content where for example irregular-

ly shapes have to be imposed without wasting
space on the imposed sheet as would be the case if
the imposition would be based on the bounding
rectangle of the label

• create versions of complex production files that clip
or overlay distracting technical content and allow
an unobstructed view of the main page content, e.g
the label as it will actually appear out of the print-
ing process

In order to enable these and many more uses, the
Shapes feature are configured in two steps

• the actual shape(s) have to be defined; at this stage
"shapes" are considered to just be abstract defini-
tions of some area(s) on a page

• next, an action is defined that is executed using the
defined shape(s); for example, a shape can be
filled, outlined or used for clipping

Both steps come with a number of parameters that de-
termine exactly how shapes are created, or how ac-
tions are to be executed. The necessary details are dis-
cussed in the next two articles.

Shapes Shapes: An overview 72

New in callas pdfToolbox 9

Designing shapes

In many cases, the use of shapes will be obvious. For exam-
ple, when creating a die line based on the trim box, optional-
ly with rounded corners, a user would simply define shape
based on the page's trim box, set rounded corner radius to
3mm, and would then define the action to be applied to the
sahpe as a spot color outline with a spot color named
"Dieline".

In other cases more complex requirements may have to be
accommodated. For example, when a partial has to be creat-
ed over any part of the page where something is actually
printed, except one area where the barcode goes, as this area
shall not become glossy (it is difficult to read barcodes with a
glossy surface). While this can be achieved relatively easily
using the Shapes feature, it can quickly become confusing,
especially at the beginning, as Shapes are defined in a very
abstract fashion.

In all cases where shapes are to be defined and used in non-
trivial ways, it is highly recommended to make a simple
drawing, using old fashioned pencil and paper, reflecting the
expected page content page geometry and so forth, and the
draw the shape information to be derived, and how it is to be
derived based on existing information. When doing this,
please also note, that in some cases two or more separate
steps may be necessary. In such a case a Process Plan may be
used, that runs a sequence of Shape steps.

Shapes Shapes: An overview 73

New in callas pdfToolbox 9

Defining shapes

Working with shapes means using the "Create and ap-
ply shapes" fixup. pdfToolbox 9 comes with a small set
of predefined "Create and apply shapes" fixups, which
can be found in the "Shapes, Variables, JavaScript,
Place content" library. The content below will explain
how to create custom "Create and apply shapes" fix-
ups - specifically, how to configure the part that cre-
ates shapes. Applying actions to shapes will be ex-
plained in the next article.

Creating a Shapes fixup

In order to create a new Shapes fixup, simply create a new
fixup, search for "Create and apply shapes" under "Type of
fixup" and select "Create and apply shapes"

Shapes Defining shapes 74

New in callas pdfToolbox 9

Create new fixup

Shapes Defining shapes 75

New in callas pdfToolbox 9

Setting up new fixup as "Create and apply shapes"
fixup

1. enter "shape" in the search field
2. select the "Create and apply shapes" entry in the "Type of

fixup" list
3. use the options under "Create shapes" the configure how

shapes are to be created

Shapes Defining shapes 76

New in callas pdfToolbox 9

"Create shape" parameter

There are a number of approaches how one or several shapes
can be created. The steps below will discuss each (group of)
such approaches.

Shapes Defining shapes 77

New in callas pdfToolbox 9

Discussion of the "Create shape: parameters:
MediaBox, CropBox, BleedBox, TrimBox, ArtBox

The simplest approach is to pick up a page geometry box (i.e.
one of MediaBox, CropBox, BleedBox, TrimBox or ArtBox).
Further below you will find a discussion how to fine tune the
use of such a page geometry box.

Discussion of the "Create shape: parameters: From
tracing page content

A more advanced approach is to use the rendered appear-
ance of page content and create an outline around it (and for
any 'holes' inside it). Depending on whether white areas (as

Shapes Defining shapes 78

New in callas pdfToolbox 9

opposed to areas that just look white because they are actu-
ally transparent and let the white background shine through)
are considered part of the rendered page content or not, it is
necessary to choose between "From tracing page content (in-in-
cludingcluding white areas)" and "From tracing page content (eex-x-
cludingcluding white areas)".

Please see below for a discussion of how to adjust parame-
ters for tracing page content.

Discussion of the "Create shape: parameters:
MediaBox, CropBox, BleedBox, TrimBox, ArtBox (Copy)
(Copy)

This approach is similar to the "From MediaBox" etc. ap-
proaches but instead of picking up the existing page geome-
try box, it is necessary to provide the coordinates of the de-
sired box and its position on the page. Please see below for a
discussion of the necessary parameters.

Shapes Defining shapes 79

New in callas pdfToolbox 9

Discussion of the "Create shape: parameters:
MediaBox, CropBox, BleedBox, TrimBox, ArtBox (Copy)
(Copy) (Copy)

Another way to derive shapes from page content is to use
"From vector paths". This will simply pick up existing path
objects (and by implication it does not pick up images, image
masks, font based text objects, soft masks, or smooth
shades) and turn them into shapes.

ImportImportantant::
Usually it does not make sense to pick up all path objects on
the page, but rather only a small set of path objects, or even
just exactly one path object – e.g. a die-line colored in a spe-
cific spot color.

Please see below for discussion of how to use parameters for
this approach.

Shapes Defining shapes 80

New in callas pdfToolbox 9

"Shape intent" parameter

Shapes can be put to use in a number of ways. While aspects
such as how to color the area inside a shape or how to stroke
its contour are discussed in the next article about applying
shapes, some control over the use of each of the individual
shapes is already provided in this "Create shape" article.

Discussion of the "Shape intent" parameter: Render
only inside shape

Shapes Defining shapes 81

New in callas pdfToolbox 9

Where shapes are to be used for filling the area inside them
with a certain color, this would be the option to choose. It is
important though to understand that where shapes are in-
side one another, the even odd rule for painting applies – i.e.
if a shape consists of two circles where one circle is com-
pletely inside the other circle, only the area between the con-
tours of the two circles will be colored, the areas outside the
outer circle and the area inside the inner circle would remain
uncolored.

Discussion of the "Shape intent" parameter: Render
only outside shape

Where shapes are to be used for filling the outside of an area,
but not the area inside it, with a certain color, this would be
the option to choose. It is important though to understand
that where shapes are inside one another, the even odd rule
for painting applies. I.e. in this case if a shape consists of two
circles where one circle is completely inside the other circle,
the area between the contours of the two circles will not be
colored, but the areas outside the outer circle and the area
inside the inner circle would be colored.

Shapes Defining shapes 82

New in callas pdfToolbox 9

Discussion of the "Shape intent" parameter: Suppress
rendering inside shape

This shape intent ensures that regardless of any of the other
shapes and their shape intent the inner area defined by this
shape will remain uncolored. This will normally only make
sense if this shape is combined with at least one other shape,
that creates a colored (or stroked) area.

Discussion of the "Shape intent" parameter: Suppress
rendering outside shape

This shape intent ensures that regardless of any of the other
shapes and their shape intent the outside area defined by
this shape will remain uncolored. This will normally only
make sense if this shape is combined with at least one other
shape, that creates a colored (or stroked) area.

Shapes Defining shapes 83

New in callas pdfToolbox 9

Additional parameters for defining shapes

The third setting "Parameter" in a shape configuration de-
pends on the actual "Create shape" setting, and will differ
substantially between them. The steps below explain the pa-
rameters for each of the "Create shape" settings.

Shapes based on MediaBox, CropBox, BleedBox,
TrimBox, ArtBox

When the "Create shape" setting is set to any of the page
geometry boxes (in this example it is set to "From TrimBox"),
the current "Parameter" values are reported.

1. Clicking on the "Edit" button, the "Create shape parame-
ters" dialog will open, offering the applicable parameters
for editing.

Shapes Defining shapes 84

New in callas pdfToolbox 9

Parameters for shapes based on MediaBox, CropBox,
BleedBox, TrimBox, ArtBox

1. Adjust size makes it possible to subtract from (negative
numbers) or to add (positive numbers) to the page geom-
etry box. For example, entering "-5" will make the result-
ing rectangular shape smaller by 5 units on each side of
the rectangle.

2. "Adjust size unit" makes it possible to pick between point,
millimeter and inch.

3. Where it is desired to create a rectangular shape with
rounded corners, a number greater than zero needs to be
entered in this field. The number defines the radius of the
rounded corners.

4. "Rounded corner unit" makes it possible to pick between
point, millimeter and inch.

Shapes based on tracing page content (including or
excluding white areas)

Shapes Defining shapes 85

New in callas pdfToolbox 9

When the "Create shape" setting is set to one of the two
"From tracing page content" options (in this example it is set
to "From tracing page content (excluding white areas)"), the
current "Parameter" values are reported.

1. Clicking on the "Edit" button, the "Create shape parame-
ters" dialog will open, offering the applicable parameters
for editing.

Parameters for shapes based on tracing page content
(including or excluding white areas)

The parameters in this dialog provide some control over the
rendering of the page for tracing purposes, and ver the trac-
ing as such.

ImportImportantant:: The default settings are the result of extensive re-
search, and are considered to be highly suitable for most use
cases. Only in the rare case, where there is reason to assume
modified values for these parameters will provide more suit-
able results, should the values be modified.

1. Resolution of the (internally rendered) page image
2. Whether to consider rendered values above this value as

transparent
3. Apply despeckling no more than this number of pixels are

of the same color and are surrounded on all sides by pix-
els of the other color.

Shapes Defining shapes 86

New in callas pdfToolbox 9

4. Determines the "curve smoothness" to achieved. A value
of zero would lead to a tracing result where the sides of
each pixel of the rendered image are followed precisely,
leading to a jaggy tracing result (though at 1200 ppi) the
jagginess might not be readily noticeable – nonetheless,
this lack of smoothness will increase time to process, and
will not add any actual quality to the tracing result.

5. Makes it possible to enable or disable curve optimization
(see 6.)

6. Maximum delta allowed between a pixel perfect tracing
result and the result of curve optimization. A value 0.2 will
keep the optimization error at a minimum that will hardly
ever be noticeable while still allowing for creation of effi-
cient curves.

7. Makes it possible to create a rendered page only based on
the objects found by this filter. For example, if the inten-
tion is to create a shape over all vector text objects of
spot color "Orange", but not over the rest of the page con-
tent, a filter "Is text object using spot color 'Orange'"
could be configured and selected, and tracing would hap-
pen based on a rendering of the page where the page
(temporarily) only shows orange text.

Shapes based on a custom defined box

When the "Create shape" setting is set to "From custom box",
the current "Parameter" values are reported.

1. Clicking on the "Edit" button, the "Create shape parame-
ters" dialog will open, offering the applicable parameters
for editing.

Shapes Defining shapes 87

New in callas pdfToolbox 9

Parameters for shapes based on a custom defined box

The parameters for "From custom box" are a combination of
the parameters for page geometry boxes, and the parameters
needed to describe the size and position of the custom page
on the page area:

1. Determines the reference point (relative to the reference
rectangle under 2.) starting from which the custom box
shall be positioned

2. Determines the reference rectangle from which the cus-
tom box shall be positioned

3. Horizontal offset from the reference point where the re-
spective corner of the custom box shall be (e.g. for "Lower
right corner" of "CropBox" a positive value would move
the lower right corner of the custom box to the right)

4. Vertical offset from the reference point where the respec-
tive corner of the custom box shall be (e.g. for "Lower
right corner" of "CropBox" a positive value would move
the lower right corner of the custom box downwards)

5. Width of the custom box
6. Height of the custom box

Shapes Defining shapes 88

New in callas pdfToolbox 9

7. Measurement unit for the values entered in fields 3.
through 6.

8. Adjust size makes it possible to subtract from (negative
numbers) or to add (positive numbers) to the page geom-
etry box. For example, entering "-5" will make the result-
ing rectangular shape smaller by 5 units on each side of
the rectangle.

9. "Adjust size unit" makes it possible to pick between point,
millimeter and inch.

10. Where it is desired to create a rectangular shape with
rounded corners, a number greater than zero needs to be
entered in this field. The number defines the radius of the
rounded corners.

11. "Rounded corner unit" makes it possible to pick between
point, millimeter and inch.

12. Makes it possible to limit the creation (and application) of
this shape only t pages where the applicable filter ap-
plies. For example, if the filter is set to find objects using a
spot color "Lime Green", only for pages that contain at
least one object using that spot color will trigger the cre-
ation of this custom box.

Shapes based on existing vector paths

When the "Create shape" setting is set to "From vector
paths", the current "Parameter" values are reported.

1. Clicking on the "Edit" button, the "Create shape parame-
ters" dialog will open, offering the applicable parameters
for editing.

Shapes Defining shapes 89

New in callas pdfToolbox 9

Parameters for shapes based on existing vector paths

For creation of shapes "From vector paths", only one parame-
ter can be configured: a filter determining which of the vector
objects on the respective page to use.

ImportImportantant::
Usually it does not make sense to pick up all path objects on
the page, but rather only a small set of path objects, or even
just exactly one path object – e.g. a die-line colored in a spe-
cific spot color.

Shapes Defining shapes 90

New in callas pdfToolbox 9

Applying shapes

The "Create and apply shapes" fixup consists of two
configuration sections First, one or ore shapes need to
be defined under "Create shapes", next an action has
to be defined under "Apply shapes" that determines
how to make use of these shapes.

This article describes the configuration of the "Apply
shapes" section.

"Apply shapes" parameters

1. The popup menu under "Shape usage" determines what
action to apply to to the shapes created in the "Create
shapes" section.

2. Depending on the chose "Shape usage", different sets of
parameters become available under "Parameter"

Shapes Applying shapes 91

New in callas pdfToolbox 9

3. The "+" (plus) button to the right makes it possible to de-
fine more than one action on the defined shapes. The "-"
(minus) button makes it possible to remove such an ac-
tion. It is only enabled if there are t least two actions in
the list of "Apply shapes" actions.

The following steps describe both the "Shape usage" options
and the parameters that come with each these options.

"Apply shape": List of settings

This screenshot lists the currently available"Shape usage"
options.

Filling shapes in front or behind existing page content

Important note:
The description below applies in the exact same fashion to
filled shapes created behindbehind current page content. The op-
tion to create a filled shape behind current page content willwill
only wonly work as eork as expectxpected in ved in verery fy feew cw casesases, as any current page
content that is opaque will hide the filled shape created be-
hind it. If for example the whole page has an opaque white
background object, or any other opaque object that fills the

Shapes Applying shapes 92

New in callas pdfToolbox 9

whole page or most of it, the created filled shape will most
probably not be visible at all.

The creation of a "Filled shape in front of current page con-
tent" means that the defined shape(s) will be inserted into
each page as a path object. If the shape consists of severals
part, it will be created as a path object with as many closed
sub-paths. For this path object a fill will be applied as config-
ured under "Parameters".

Filling shapes in front or behind existing page content
– Fill parameters

1. Color model to be used for filling the path object; avail-
able models are CMYK, RGB, gray, and Lab. For CMYK,
RGB and gray, values can be set to be provided in percent
(0...100%) or as a number (0.0...1.0). Lab values must al-
ways be provided as 0...100 for the L value, and -127...128
for the a and b values.

2. Depending on the chosen color space, one, three or four
values have to be provided

Shapes Applying shapes 93

New in callas pdfToolbox 9

3. If this check box is activated, the color used for the fill be
create as a spot color, the color model will then be used
as the alternate color space for the spot color, and the
color values will determine the appearance of a 100% tint
value of the spot color

4. Name of the spot color (only enabled if checkbox "Create
as spot color" is activated)

5. Tint value to use for filling the path with the spot color
(only enabled if checkbox "Create as spot color" is acti-
vated)

6. If this checkbox is activated, the fill color will be set to
overprint.

7. Sets the opacity for the filled path object, i.e. the degree
to which the path object will be transparent or not. A val-
ue of 100% means that the object is opaque (not trans-
parent at all), and a value of 0% means the object is fully
transparent (which implies that it will not be visible at
all).

8. Determines the rendering intent. This will only become
relevant when a color conversion is applied at a later
stage.

9. Set the transparency blend mode. All 16 blend modes de-
fined in the PDF imaging model are available.

10. If not empty, determines that path object is created on a
separate layer, named according to the value in this entry.

Stroking shapes in front or behind existing page
content

Important note:
The description below applies in the exact same fashion to
stroked shapes created behindbehind current page content. The op-
tion to create a stroked shape behind current page content
will only wwill only work as eork as expectxpected in ved in verery fy feew cw casesases, as any current

Shapes Applying shapes 94

New in callas pdfToolbox 9

page content that is opaque will hide the stroked shape cre-
ated behind it. If for example the whole page has an opaque
white background object, or any other opaque object that
fills the whole page or most of it, the created stroked shape
will most probably not be visible at all.

The creation of a "Stroked shape in front of current page con-
tent" means that the defined shape(s) will be inserted into
each page as a path object. If the shape consists of severals
part, it will be created as a path object with as many closed
sub-paths. For this path object a stroke (also called contour
or outline) will be applied as configured under "Parameters".

Stroking shapes in front or behind existing page
content - Stroke parameters

1. Color model to be used for stroking the path object; avail-
able models are CMYK, RGB, gray, and Lab. For CMYK,
RGB and gray, values can be set to be provided in percent
(0...100%) or as a number (0.0...1.0). Lab values must al-

Shapes Applying shapes 95

New in callas pdfToolbox 9

ways be provided as 0...100 for the L value, and -127...128
for the a and b values.

2. Depending on the chosen color space, one, three or four
values have to be provided

3. If this check box is activated, the color used for the stroke
be create as a spot color, the color model will then be
used as the alternate color space for the spot color, and
the color values will determine the appearance of a 100%
tint value of the spot color

4. Name of the spot color (only enabled if checkbox "Create
as spot color" is activated)

5. Tint value to use for stroking the path with the spot color
(only enabled if checkbox "Create as spot color" is acti-
vated)

6. If this checkbox is activated, the stroke color will be set to
overprint.

7. Sets the opacity for the stroked path object, i.e. the de-
gree to which the path object will be transparent or not. A
value of 100% means that the object is opaque (not trans-
parent at all), and a value of 0% means the object is fully
transparent (which implies that it will not be visible at
all).

8. Sets the line width of the stroke in pt.
9. Sets the line cap style for the stroke. This will only have

an effect if the stroke is created as a dashed line (see pa-
rameter 11). In order to create a dotted line, a suitable
line dash pattern needs to be defined, where the part of
the dash being painted must have the same length as the
line is wide, and the line style must be defined as "Round
cap".

10. Sets the line join style This will determine the shape of
the line in the corners. Miter joins are ideal for orthogonal
corners (e.g. in a rectangle), but can lead to very long
pointed corners for corners that are of a sharp angle (this
will often be perceived as strange artifacts). For sharp an-
gles it is better to use Bevel join or Round join.

11. Using PDF syntax for dashed lines, this makes it possible
to create dashed or dotted lines in many variations. The
syntax consists of a sequence of numbers inside one pair
of square brackets. Each number determines the length
of a line segment that is painted or that is a gap. The first
number inside the pair of brackets always defines the
length of a painted segment, the second number defines
the length of a gap. The third number, defines the length
of a painted segment, and so on. Once the sequence of

Shapes Applying shapes 96

New in callas pdfToolbox 9

numbers inside the square brackets have been used up
the sequence will start again at the beginning. A simple
example would be [3 2] which would lead to a line of
painted segments two units long, and gaps between
painetd segments of a length of 2 units. In order to create
an evenly dotted line of 2pt width, use 2 pt for the width
of the line, a painted segment length of 0 [sic!] and a gap
of 4 units (i.e. a line dash parameter of "[0 4]"), and line
cap style of "Round caps", The he line join style is irrele-
vant in this scenario

12. Determines the rendering intent. This will only become
relevant when a color conversion is applied at a later
stage.

13. Set the transparency blend mode. All 16 blend modes de-
fined in the PDF imaging model are available.

14. If not empty, determines that path object is created on a
separate layer, named according to the value in this entry.

Stroking and filling shapes at the same time in front or
behind existing page content

Important note:
The description below applies in the exact same fashion to
stroked and filled shapes created behindbehind current page con-
tent. The option to create a stroked and filled shape behind
current page content will only wwill only work as eork as expectxpected in ved in verery fy feeww
ccasesases, as any current page content that is opaque will hide
the stroked and filled shape created behind it. If for example
the whole page has an opaque white background object, or
any other opaque object that fills the whole page or most of
it, the created stroked and filled shape will most probably
not be visible at all.

Shapes Applying shapes 97

New in callas pdfToolbox 9

The creation of a "Stroked and filled shape in front of current
page content" means that the defined shape(s) will be insert-
ed into each page as a path object. If the shape consists of
severals part, it will be created as a path object with as many
closed sub-paths. For this path object a stroke (also called
contour or outline) and a fill will be applied as configured un-
der "Parameters". The color for the stroke and the fill can be
configured to be different.

According to the PDF imaging model, the fill will always be
painted first, followed by the stroke. This implies that the line
is guaranteed to always be shown with its indicated line
width, half of which will be rendered towards the inside of
the path segments, overlaying the fill, with the other half of it
being rendered outside of the path segments.

A specific use of this is to define both fill and stroke using the
same color definition (preferably a spot color for this to work
well), and to use a tint value of 100% for the fill and of 0% for
the stroke. If both are set to overprint, hey will not affect any
content underneath, and the resulting rendered path object
will appear to be half of the line width smaller. This can be
very useful for example for creating a white background that
is slightly smaller than the shape from which it is generated.

Shapes Applying shapes 98

New in callas pdfToolbox 9

Stroking and filling shapes at the same time in front or
behind existing page content - Stroke and fill
parameters

1. Color model to be used for filling the path object; avail-
able models are CMYK, RGB, gray, and Lab. For CMYK,
RGB and gray, values can be set to be provided in percent
(0...100%) or as a number (0.0...1.0). Lab values must al-
ways be provided as 0...100 for the L value, and -127...128
for the a and b values.

2. Depending on the chosen color space, one, three or four
values have to be provided

3. If this check box is activated, the color used for the fill be
create as a spot color, the color model will then be used
as the alternate color space for the spot color, and the
color values will determine the appearance of a 100% tint
value of the spot color

4. Name of the spot color (only enabled if checkbox "Create
as spot color" is activated)

Shapes Applying shapes 99

New in callas pdfToolbox 9

5. Tint value to use for filling the path with the spot color
(only enabled if checkbox "Create as spot color" is acti-
vated)

6. If this checkbox is activated, the fill color will be set to
overprint.

7. Sets the opacity for the filled path object, i.e. the degree
to which the path object's fill will be transparent or not. A
value of 100% means that the object is opaque (not trans-
parent at all), and a value of 0% means the object is fully
transparent (which implies that it will not be visible at
all).

8. Color model to be used for stroking the path object; avail-
able models are CMYK, RGB, gray, and Lab. For CMYK,
RGB and gray, values can be set to be provided in percent
(0...100%) or as a number (0.0...1.0). Lab values must al-
ways be provided as 0...100 for the L value, and -127...128
for the a and b values.

9. Depending on the chosen color space, one, three or four
values have to be provided

10. If this check box is activated, the color used for the stroke
be created as a spot color, the color model will then be
used as the alternate color space for the spot color, and
the color values will determine the appearance of a 100%
tint value of the spot color

11. Name of the spot color (only enabled if checkbox "Create
as spot color" is activated)

12. Tint value to use for stroking the path with the spot color
(only enabled if checkbox "Create as spot color" is acti-
vated)

13. If this checkbox is activated, the stroke color will be set to
overprint.

14. Sets the opacity for the stroked path object, i.e. the de-
gree to which the path object's stroke will be transparent
or not. A value of 100% means that the object's stroke is
opaque (not transparent at all), and a value of 0% means
the object's stroke is fully transparent (which implies that
it will not be visible at all).

15. Sets the line width of the stroke in pt.
16. Sets the line cap style for the stroke. This will only have

an effect if the stroke is created as a dashed line (see pa-
rameter 11). In order to create a dotted line, a suitable
line dash pattern needs to be defined, where the part of
the dash being painted must have the same length as the
line is wide, and the line style must be defined as "Round
cap".

Shapes Applying shapes 100

New in callas pdfToolbox 9

17. Sets the line join style This will determine the shape of
the line in the corners. Miter joins are ideal for orthogonal
corners (e.g. in a rectangle), but can lead to very long
pointed corners for corners that are of a sharp angle (this
will often be perceived as strange artifacts). For sharp an-
gles it is better to use Bevel join or Round join.

18. Using PDF syntax for dashed lines, this makes it possible
to create dashed or dotted lines in many variations. The
syntax consists of a sequence of numbers inside one pair
of square brackets. Each number determines the length
of a line segment that is painted or that is a gap. The first
number inside the pair of brackets always defines the
length of a painted segment, the second number defines
the length of a gap. The third number, defines the length
of a painted segment, and so on. Once the sequence of
numbers inside the square brackets have been used up
the sequence will start again at the beginning. A simple
example would be [3 2] which would lead to a line of
painted segments two units long, and gaps between
painetd segments of a length of 2 units. In order to create
an evenly dotted line of 2pt width, use 2 pt for the width
of the line, a painted segment length of 0 [sic!] and a gap
of 4 units (i.e. a line dash parameter of "[0 4]"), and line
cap style of "Round caps", The he line join style is irrele-
vant in this scenario

19. Determines the rendering intent. This will only become
relevant when a color conversion is applied at a later
stage.

20. Set the transparency blend mode. All 16 blend modes de-
fined in the PDF imaging model are available.

21. If not empty, determines that path object is created on a
separate layer, named according to the value in this entry.

Use shape as clipping path for existing page content

Shapes Applying shapes 101

New in callas pdfToolbox 9

This "Shape usage' is a special one that simply uses the de-
fined shape as a clipping path. Depending on whether the
shape intent has defined as being "Render only insideinside shape"
or "Render only outsideoutside shape" the clipping path will clip the
page content insideinside the path object or the page content out-out-
sideside the path object.

There are no configurable parameters for this shape usage.

Shapes Applying shapes 102

New in callas pdfToolbox 9

"Shapes" features extended in
pdfToolbox 9.1
Based on numerous feature requests, the "Shapes" feature,
just introduced in pdfToolbox 9.0 in summer 2016, has al-
ready been extended in pdfToolbox 9.1, released in Novem-
ber 2016. There are two areas that have been enhanced or
added:

• enlarenlarging or rging or reducing a shapeeducing a shape by a certain amount now
also is available for shapes derived from tracing page
content or using existing vector paths (until now, enlarg-
ing/reducing was only supported for rectangular shapes
based on page geometry boxes or a custom box)

• "all-inclusiv"all-inclusive" shapee" shape: it is now possible to merge several
nested shapes such that only the outer border of such
shapes will be used. For example, for a donut shape, it is
sometimes necessary to use the donut shape with the
hole in it, and in other cases it is necessary to just use its
outer border, i.e. the outer circle, and not take the hole in
it into account

Enlarging or reducing non-rectangular shapes

In many cases a shape cannot be directly used as derived
from page content. Instead, it needs to be reduced in size by
a small amount, or enlarged.
For example, for a white background in label printing on
transparent substrate, it could be necessary to print white in
all areas of the printed content, but at the same time the
white should never become visible itself, e.g. in the case of
mis-registration of the colorants during the printing process.
Thus it can make sense to reduce the area where white is to
be a printed by a millimeter or so.
Along the same lines, it can be desirable for varnish to make
sure it gets printed in top of all printed page content – and a
tiny bit beyond it, to again compensate for possible mis-
registration between colorants during the printing process. In
this case, the shape would be enlarged by a millimeter or so.

Shapes "Shapes" features extended in pdfToolbox 9.1 103

New in callas pdfToolbox 9

The option to enlarge or reduce a shape's size is now also
available for shapes derived from tracing page content or
from existing vector paths:

Shapes "Shapes" features extended in pdfToolbox 9.1 104

New in callas pdfToolbox 9

The settings for enlarging or reducing a shape's size can be
found inside the "Parameter:" dialog.

The settings for enlarging or reducing a shape's size can be
found in the lower half of the "Parameter:" dialog in the form
of

• the "Adjust size" field, and
• the "Adjust size unit" option, supporting "mm" (millime-

ter), "pt" (point) or "in" (inch) as units

A negative value for "Adjust size" will reduce the shape,
whereas a positive value for "Adjust size" will enlarge it.

Shapes "Shapes" features extended in pdfToolbox 9.1 105

New in callas pdfToolbox 9

"All-inclusive" shape: Reduce shape to outer
borders

The drawing below illustrates how the new "all-incluse" op-
tion impacts the shape that results from tracing page content
or deriving a shape from existing vector paths. The main ef-
fect is that any shapes that exist inside other shapes are dis-
carded. Where shapes overlap, the combined area of such
overlapping shapes will be used as the actual shape. For
shapes that are neither nested nor overlapping, the option
has no effect.

Shapes "Shapes" features extended in pdfToolbox 9.1 106

New in callas pdfToolbox 9

The "Reduce shape to outer borders" is only available for the
three "Create shape" variants

• From tracing page content (excluding white area)
• From tracing page content (including white area)
• From vector paths

Shapes "Shapes" features extended in pdfToolbox 9.1 107

New in callas pdfToolbox 9

The "Reduce shape to outer borders" can be found inside the
"Parameter:" dialog.

The "Reduce shape to outer borders" can be found at the
bottom of the "Parameter:" dialog.

Shapes "Shapes" features extended in pdfToolbox 9.1 108

New in callas pdfToolbox 9

Shapes "Shapes" features extended in pdfToolbox 9.1 109

New in callas pdfToolbox 9

Efficiently creating varnish or white
background (requires at least v9.1)
In pdfToolbox 9.1, the "Shape" feature has been enhanced.
This article shows how to take advantage of the enhance-
ments when creating a varnish or a white background. The
two attachments below provide the sample PDF and the
pdfToolbox Library containing the fixups used in this article.

Sample file and pdfTo pdfolbox Library with
pre-configured fixups

Growing or shrinking a shape

When creating a ppartial vartial varnisharnish it is often desirable to derive
the area where varnish shall be applied from actually printed
content. At the same time, mostly in order to compensate for
less than perfect registration of plates or print heads, it is
usually necessary that the vthat the varnish earnish extxtends slightlyends slightly, maybe b, maybe byy
a millimea millimetter or twer or twoo, be, beyyond the printond the printed ced contontent arent areeaa, to en-
sure that printed content is always varnished. The fact, that
some small area where nothing is printed also receives var-
nish, is typically not considered a problem.

Along the same lines, but usually in the other direction, a
white background may have to be created for printing on
transparent substrate – but as the background shall not be-
come visible as such, it needs to be shrunk by a little bit to
pull back from the border of the print content area.

Both requirements can now be met very easily by the extend-
ed "Shape" feature, using the "adjust size" setting. This set-
ting was already available for shapes based on page geome-

donuts.pdf

Shapes-_creating_varnish_or_white_background.kfpl

Shapes Efficiently creating varnish or white background (requires at least v9.1) 110

New in callas pdfToolbox 9

https://s3.amazonaws.com/screensteps_live/attachment_assets/assets/000/204/725/original/donuts.pdf?1477308027
https://s3.amazonaws.com/screensteps_live/attachment_assets/assets/000/204/724/original/Shapes-_creating_varnish_or_white_background.kfpl?1477308026

try boxes or a custom box but now can also be used for
shapes derived from tracing page content or from existing
vector paths.

In addition, a new setting "Reduce shape to outer borders"
makes it possible to include 'holes' inside print content ar-
eas, which can be very handy for the generation of a white
background (see example below). Extending/shrinking
shapes and 'reduce to outer border' can be freely combined
with each other and any of the other options.

Create shape parameters for "From vector paths" option,
with highlighted "Adjust size" settings:

Create shape parameters for "From tracing page content" op-
tion, with highlighted "Adjust size' settings:

Shapes Efficiently creating varnish or white background (requires at least v9.1) 111

New in callas pdfToolbox 9

"Reduce shape to outer borders" setting:

Shapes Efficiently creating varnish or white background (requires at least v9.1) 112

New in callas pdfToolbox 9

Example: Extending varnish

Sample file (see above for download):

Sample file (see above for download, enlarged detail):

Shapes Efficiently creating varnish or white background (requires at least v9.1) 113

New in callas pdfToolbox 9

Varnish applied to all page objects based on their vector
paths, after applying "Varnish over print objects +2mm (vec-
tor)":

Shapes Efficiently creating varnish or white background (requires at least v9.1) 114

New in callas pdfToolbox 9

Varnish applied to all page objects based on their vector
paths (enlarged detail):

Shapes Efficiently creating varnish or white background (requires at least v9.1) 115

New in callas pdfToolbox 9

Example: Shrinking white background, after reducing
shape to outer border

White background derived from all page objects based on
their vector paths, using only the outer border of all paths,
using "White backing under print objects -1.5mm, based on
outer border (vector)":

White background derived from all page objects based on
their vector paths, using only the outer border of all paths
(enlarged detail):

Shapes Efficiently creating varnish or white background (requires at least v9.1) 116

New in callas pdfToolbox 9

Shapes Efficiently creating varnish or white background (requires at least v9.1) 117

New in callas pdfToolbox 9

Spectral color and CxF

Spectral color and CxF 118

New in callas pdfToolbox 9

Embed CxF data (import)

In order to import CxF information CxF XML files need
to be present in a folder and their name has to be the
spot color name that it represents.

Open Switchboard -> Prepress -> Embed CxF data

Spectral color and CxF Embed CxF data (import) 119

New in callas pdfToolbox 9

Open a PDF/X file

The PDF needs to be a PDF/X file or has to have at least an
PDF/X Output Intent entry, since the CxF information is being
embedded into the Output Intent entry. If there is no Output
Intent entry present the "Execute" button in pdfToolbox can-
not be hit.

Spectral color and CxF Embed CxF data (import) 120

New in callas pdfToolbox 9

Select a folder

Click on Browse and select a folder that contains CxF XML
files. Click on Execute in order to embed the CxF XML files.

Spectral color and CxF Embed CxF data (import) 121

New in callas pdfToolbox 9

The presence of CxF information in the result PDF
is indicated by a CxF button at the bottom of the
pdfToolbox window

Spectral color and CxF Embed CxF data (import) 122

New in callas pdfToolbox 9

Extract and remove CxF information

In order to extract or remove CxF information go
to Switchboard -> Prepress

Spectral color and CxF Extract and remove CxF information 123

New in callas pdfToolbox 9

Open a PDF that has CxF information attached

The presence of CxF information is indicated at the bottom of
the pdfToolbox window.

Spectral color and CxF Extract and remove CxF information 124

New in callas pdfToolbox 9

Extracting CxF data

If you extract CxF data you are asked for a folder in your file
system. For each CxF information in the PDF an XML file is
created in that folder that has the name of the spot color that
it represents.

Spectral color and CxF Extract and remove CxF information 125

New in callas pdfToolbox 9

A folder with CxF information as extracted from a
PDF file

Spectral color and CxF Extract and remove CxF information 126

New in callas pdfToolbox 9

Removing CxF data from a PDF

You will be asked for a location to save the new PDF to.

Spectral color and CxF Extract and remove CxF information 127

New in callas pdfToolbox 9

The CxF indicator disappears from the
pdfToolbox window

Spectral color and CxF Extract and remove CxF information 128

New in callas pdfToolbox 9

Analyze CxF information

Analyzing CxF information in a PDF file is easily
possible...

...by clicking on the CxF indicator at the bottom of the win-
dow.

Spectral color and CxF Analyze CxF information 129

New in callas pdfToolbox 9

A windows opens that displays the CxF data for
the first spot color in its XML structure

A pop up at the bottom of the windows allows you to select
the spot color that you want to see.

Spectral color and CxF Analyze CxF information 130

New in callas pdfToolbox 9

It is also possible to run a profile that checks for
various parameters of a PDF in combination with
the embedded CxF information

Open the Profiles window and search for "CxF"

Spectral color and CxF Analyze CxF information 131

New in callas pdfToolbox 9

The CxF information profile "Find CxF issues"...

... reports for example if a PDF uses spot colors for which no
CxF information is present.

Spectral color and CxF Analyze CxF information 132

New in callas pdfToolbox 9

Introduction: CxF and spectral data

CxF is an ISO standard that has been published in June
2015 as ISO 17972-4. To be more precise it is a series of
standards from which part 4 has been published first.
CxF/X-4 covers spot colors, the other standard parts
will cover other color, like process colors etc.

CxF stands for Color Exchange Format and allows for
embedding spectral data (measurements) into a PDF
file. The presence of such data can potentially improve
results when colors have to be simulated on a device
that does not have that colorant. That obviously makes
the most sense for spot colors, e.g. when they have to
be printed on digital printer like on an ink jet machine.
The same is true when the spot color has to be
proofed.

CxF/X-4 defines 3 conformance levels:

• CxF/X-4b - is the least demanding level and requires
a measurement for a single solid (100%) spot color
patch.

• CxF/X-4a - requires a minimum of 3 measurements
(3 spot color patches), recommended are a total of
11 measurements.

• CxF/X-4 - requires that patches on black back-
ground have to be measured in addition to the
measurements on white background which are the
same as for CxF/X-4a . Again 3 measurements are
required - on white and black substrate (a total of
6), but recommended are 11 (22). Printing on black
background shows how that spot color appears
when printed in conjunction with other colors at
the same spot of the substrate.

Spectral color and CxF Introduction: CxF and spectral data 133

New in callas pdfToolbox 9

New and extended
properties

New and extended properties 134

New in callas pdfToolbox 9

New and enhanced Properties in 9.0

To check for number of hits generated by other Proper-
ties within the same Check, group "Pages":

• Number of hits in this check

Related to CxF (Spectral data information in PDF), all in
group "Output Intents for PDF/X":

• Number of CxF entries
• Number of process colorants without CxF entry
• Number of spot colorants without CxF entry
• Number of colorants without CxF entry
• Number of stray CxF entries
• CxF entry conforms to CxF/X-4 XML schema
• CxF conformance level is CxF/X-4
• CxF conformance level is CxF/X-4a
• CxF conformance level is CxF/X-4b
• CxF entry present for this colorant name
• Spot color is present in CxF and in MixingHints/So-

lidities

For the groups "Colors", "Output Intents for PDF/X",
"Output Intents for PDF/A" and "Output Intents for
PDF/E":

• Number of components in ICC profile dictionaries N
entry does not match ICC profile

New and extended properties New and enhanced Properties in 9.0 135

New in callas pdfToolbox 9

New and enhanced Properties in 9.1

New Properties

• Rotation of text:
To detect rotated text

• Is in custom area
Can becombined with other Properties to detect if ob-
jects are within a defined area or not.

New Properties related to Processing Steps

• Processing Steps metadata present
• Same Processing Steps metadata used for more than one

layer
• Processing Steps
• Processing Steps metadata uses custom values
• Layer metadata (extended)

New and extended properties New and enhanced Properties in 9.1 136

New in callas pdfToolbox 9

How to use the "Number of hits in
the check" property (9.0)

Starting with pdfToolbox 9, a new property can be
added to checks to define the number of hits which are
needed for the respective Check. "Number of hits in
this check" has to be combined with other properties
and counts for each page the number of hits for the
combined properties. A hit will only be generated for a
page if the number of hits matches the defined settings
of this property.

This property works object-based and per page, so a
combination with e.g. a document or PDF/X property
will not give a proper result.

Only fire, if more than ... objects on a page

New and extended properties How to use the "Number of hits in the check" property (9.0) 137

New in callas pdfToolbox 9

For example, the predefined Check "More than 10000 bitmap
images on a page" is configured in the way, that it will only
fire, if the number of bitmap images is greater than 10000.

Other use case are possible of course: to check if there are
less than a defined number of objects on the page (maybe to
detect almost empty pages), ...

Create a Fixup with a such a Check

Such Checks can easily be used in Fixups. For example to
convert complex pages into images to prevent problems with
an older RIP or printer.

New and extended properties How to use the "Number of hits in the check" property (9.0) 138

New in callas pdfToolbox 9

New and extended Fix-
ups

New and extended Fixups 139

New in callas pdfToolbox 9

New and enhanced Fixups in
pdfToolbox 9.1

New Fixups

• Insert empty page
For adding additional, empty pages at specific positions
within the PDF (can be combined with a Check, e.g. for a
sequential page number)

• Move objects
To moves objects (defined by Check) with a defined offset
vertically and/or horizontally

Several new or extended Fixups regarding "Processing
Steps" e.g. for creating layers or to set special metadata for
such layers:

• Put objects on Processing Steps layer
• Modify layer name for Processing Steps layer metadata
• Add Processing Steps layer metadata
• Extended with "Processing Steps" related options:

• Configure OC-
CD

• Remove layer
• Set layer de-

fault to
• Set layer ini-

tial export
state | print
state | visibili-
ty state

• Set layer
name

• Set layer state
• Set layer in-

tent
• Set layer visi-

bility depen-
dent on a
zoom level

New and extended Fixups New and enhanced Fixups in pdfToolbox 9.1 140

New in callas pdfToolbox 9

Extended Fixups

• Flatten transparency:
Several compression methods added for images, which
are created during transparency flattening

• Create and apply shapes:
New options to reduce or enlarge non-rectangular shapes
and to merge overlapping shapes

• Place content on page:
Support for SVG as input format

• Flip pages:
Extended with an optional "Apply to" to limit the correc-
tion to defined pages

New and extended Fixups New and enhanced Fixups in pdfToolbox 9.1 141

New in callas pdfToolbox 9

Wireframe and selective
viewing

Wireframe and selective viewing 142

New in callas pdfToolbox 9

Examining page content

In the visualizer section of pdfToolbox Desktop, the
Object Inspector allows identifying page content, both
viewing which objects form a PDF page, and what their
attributes are. Two additional concepts: "Wireframe
viewing" and "Object type filtering" have been imple-
mented here.

Showing the object inspector

1. Click on the "View" menu
2. Select the "Object inspector" menu item

Object type filtering

By default, the object inspector shows all PDF objects on the
page. This can be changed by disabling or enabling the

Wireframe and selective viewing Examining page content 143

New in callas pdfToolbox 9

checkboxes at the bottom of the Object inspector area. Dese-
lecting "Text" for example, will cause all text objects on the
page to be hidden. This allows examining whether objects
are actually text for example, or allows viewing what is be-
hind other objects (and normally hidden from view).

Object properties

Every single object can be selected by clicking on it inside the
view on the left hand side. A click will fix the selection on the
right hand side. Another click will release it.

Wireframe and selective viewing Examining page content 144

New in callas pdfToolbox 9

Selected objects are also visible in the preview on the right
hand side.

Under "Objects at cursor", you will see a stack of all the ob-
jects in the same order as they appear in the PDF.

The topmost object is the topmost in the PDF. You can click
at objects below the topmost object to see it's properties.

Wireframe viewing

At the bottom of the Object inspector area, check the "As
Wireframe" checkbox, to show the displayed PDF page as
wireframe. In this mode, all objects are shown with different-
ly color rectangle outlines. This allows seeing the structure of
the page (which objects are on the page, how they are lay-
ered etc...).

Wireframe and selective viewing Examining page content 145

New in callas pdfToolbox 9

Advanced barcode and
matrix code features

Advanced barcode and matrix code features 146

New in callas pdfToolbox 9

Advanced 2D code use cases:
Deutsche Post DP Matrix, Data Ma-
trix Industry, rainbow colored QR
Code (requires pdfToolbox 9.1)
pdToolbox 9.1 comes with a number of extended capabilities
that make it possible to create barcodes and matrix codes for
all kinds of industries and use cases. This article illustrates
the possible use of the barcode and matrix code creation in
pdfToolbox in the form of several interesting examples.

Note: These examples make use of a couple of advanced fea-
tures that are not feasible with the "Place barcode" fixup, but
require use of the more advanced "Place dynamic content"
fixup and custom written HTML and JavaScript.

pdfToolbox Library with pre-configured example
fixups

Please feel free to download and import the pdfToolbox Li-
brary provided below:

After import you will find the examples below in the Fixups
area of pdfToolbox.

Example: Deutsche Post DP Matrix code
examples

Deutsche Post DP Matrix 2D codes have to follow very strict
specification. It is based upon DataMatrix codes, combined
with a number of Deutsche Post specific rules.

The example fixup provided creates two variants of such a
Deutsche Post DP Matrix code in the upper left of every page
of the currently open document.

Barcode_and_matrix_code_examples.kfpl

Advanced barcode and matrix code features Advanced 2D code use cases: Deutsche Post DP Matrix, Data Matrix Industry, rainbow
colored QR Code (requires pdfToolbox 9.1)

147

New in callas pdfToolbox 9

https://s3.amazonaws.com/screensteps_live/attachment_assets/assets/000/275/701/original/Barcode_and_matrix_code_examples.kfpl?1482321863

At the core of custom HTML template is the following code:

<object class="barcode_object" type="application/barcode" >
<param name="type" value="Data Matrix">
<param name="data" value="***insert data!***">
<param name="modulewidth" value="0.423mm">
<param name="dm_format" value="PostMatrix">

<!-- **empty string**, UCCEAN, Industry, _Macro05,
Reader, PostMatrix -->

<param name="dm_size" value="22x22">
<!-- **empty string**, 10x10, 12x12, 14x14, 16x16,

18x18,
20x20, 22x22, 24x24, 26x26, 32x32,

36x36, 40x40,
44x44, 48x48, 52x52, 64x64, 72x72,

80x80, 88x88,
96x96, 104x104, 120x120, 132x132,

144x144, 8x18,
8x32, 12x26, 12x36, 16x36,

16x48 -->
<param name="dm_enforcebinaryencoding" value="false">

<!-- **false**, true-->
<param name="dm_rectangular" value="false">

<!-- **false**, true-->
</object>

Applying this code with proper CSS styling will put a
Deutsche Post DP Matrix code in the upper left corner on the
pages of the currently open PDF :

Advanced barcode and matrix code features Advanced 2D code use cases: Deutsche Post DP Matrix, Data Matrix Industry, rainbow
colored QR Code (requires pdfToolbox 9.1)

148

New in callas pdfToolbox 9

Example: DataMatrix Industry 2D code 16x48

DataMatrix codes come in various flavors specific to the sec-
tor where they are used. For certain industry uses a sub-type
"Industry" exists, that uses a rectangular form not a square
form of DataMatrix codes

The example fixup provided creates one variants of 16x48
cells, and places it in the lower left of every page of the cur-
rently open document.

At the core of custom HTML template is the following code:

<object class="barcode_object" type="application/barcode" >
<param name="type" value="Data Matrix">
<param name="data" value="Actual data"> <!-- <<== Actual data must go here

-->
<param name="modulewidth" value="0.25577mm">
<param name="dm_format" value="Industry">
<param name="dm_rectangular" value="true">
<param name="dm_size" value="16x48">

<!--

Advanced barcode and matrix code features Advanced 2D code use cases: Deutsche Post DP Matrix, Data Matrix Industry, rainbow
colored QR Code (requires pdfToolbox 9.1)

149

New in callas pdfToolbox 9

<param name="dm_size" value="16x48">
supported values:
empty string, 10x10, 12x12, 14x14, 16x16, 18x18, 20x20, 22x22, 24x24,
26x26, 32x32, 36x36, 40x40, 44x44, 48x48, 52x52, 64x64, 72x72, 80x80,

88x88,
96x96, 104x104, 120x120, 132x132, 144x144, 8x18, 8x32, 12x26, 12x36,

16x36, 16x48
-->
</object>

Applying this code with proper CSS styling will put a DataMa-
trix Industry 2D code 16x48 in the lower left corner on the
pages of the currently open PDF:

Example: Rainbow colored QR Code with your
name

QR codes have many uses. This example illustrates a concept
that won't be acceptable when it comes to maximizing read-
ability of codes in an industrial environment, but can still put
to good uses in some creative scenarios. Be prepared though
to accept that such codes will not conform to any of the ap-

Advanced barcode and matrix code features Advanced 2D code use cases: Deutsche Post DP Matrix, Data Matrix Industry, rainbow
colored QR Code (requires pdfToolbox 9.1)

150

New in callas pdfToolbox 9

plicable ISO standards. Still they can be scanned surprisingly
well with your average smartphone barcode app or any up-
to-date 2D code reader.

Note: The technique shown here can also be applied to any
other type of barcode and matrix code.

The example fixup provided creates a rainbow color QR code
with the name being entered upon executing the fixup.

At the core of custom HTML template is the following code:

<object id="barcode_object" type="application/barcode"
style = "color: #eee; color: -cchip-cmyk(0,0,0,0.1);color: -cchip-cmyk(0,0,0,0.1);
background-color: pink;
background: linear-gradient(135deg, firebrick, red, orange,background: linear-gradient(135deg, firebrick, red, orange,

orange, green, blue, indigo, violet); "orange, green, blue, indigo, violet); "
>

<param name="type" value="QR-Code">
<param name="modulewidth" value="1mm">
<param name="data" id="id_barcodevalue" value="fill in actual value<param<param

name="swap_foreground_background" value="true">name="swap_foreground_background" value="true">
<param name="quietzoneleft" value="1">
<param name="quietzoneright" value="1">
<param name="quietzonetop" value="1">
<param name="quietzonebottom" value="1">
<param name="quietzoneunit" value="X">

</object>

Advanced barcode and matrix code features Advanced 2D code use cases: Deutsche Post DP Matrix, Data Matrix Industry, rainbow
colored QR Code (requires pdfToolbox 9.1)

151

New in callas pdfToolbox 9

Advanced barcode and matrix code features Advanced 2D code use cases: Deutsche Post DP Matrix, Data Matrix Industry, rainbow
colored QR Code (requires pdfToolbox 9.1)

152

New in callas pdfToolbox 9

Debugging of Profiles
and Process plans (9.1)

Debugging of Profiles and Process plans (9.1) 153

New in callas pdfToolbox 9

How to create a detailed log when
executing Process Plans (or Profiles,
Checks or Fixups)
Especially when creating a Process Plan, it can become nec-
essary to inspect intermediate results (such as PDF files in
their state in the middle of a Process Plan's processing steps
and preferably some details about each step in the form of a
log file or similar). This can help to understand and to opti-
mize the configuration of the steps in a Process Plan and
their inner workings as a whole.

Note: This logging feature is not only available for Process
Plans, but also for Profiles, Checks, and Fixups.

Activate logging

To activate logging, just click within one of the three sections
of the Profile window on the flyout menu button in the upper
right corner (1).

Debugging of Profiles and Process plans (9.1) How to create a detailed log when executing Process Plans (or Profiles, Checks or
Fixups)

154

New in callas pdfToolbox 9

Select the entry "Log Profile Execution" (1).

This option activates the logging of the execution of any
Process Plans, Profiles, Checks and Fixups.

A check mark ("✓") in front of the menu item indicates that
logging is active.

Deactivate logging

In order to deactivate logging, simply execute the menu item
again (1). The check mark ("✓") will then disappear from the
menu item (2).

Debugging of Profiles and Process plans (9.1) How to create a detailed log when executing Process Plans (or Profiles, Checks or
Fixups)

155

New in callas pdfToolbox 9

Debugging of Profiles and Process plans (9.1) How to create a detailed log when executing Process Plans (or Profiles, Checks or
Fixups)

156

New in callas pdfToolbox 9

Execute a Process Plan (or Profile, Check or
Fixup)

Execute a Process Plan (or a Profile, Check, or Fixup).

Explore folder with logging information

After processing the PDF, a window will open in Finder (on
Mac OS X) or in the Explorer (on Windows), revealing a folder
(having a time stamp at the start of its name) with all the log-
ging data and associated files inside it.

Debugging of Profiles and Process plans (9.1) How to create a detailed log when executing Process Plans (or Profiles, Checks or
Fixups)

157

New in callas pdfToolbox 9

Structure of the files subfolders in the logging
folder

This folder will contain files and subfolders:

• folders with intermediate results (if applicable) for each
step in a Process Plan (Profiles, Checks and Fixups only
will have one such step) in a folder;

• the subfold-
er's name will
consist of se-
quence num-
ber and step
number in
square brack-
ets, followed
by the name
of the step (or
the name of
the Profile,
Check, or Fix-
up);

• the subfolder
will also con-
tain the pro-

Debugging of Profiles and Process plans (9.1) How to create a detailed log when executing Process Plans (or Profiles, Checks or
Fixups)

158

New in callas pdfToolbox 9

file, check or
fixup associ-
ated with the
respective
Process Plan
step as a "kf-
px" file

• the original file (in this example
"Adv_callas_v2_final.pdf")

• logging information in a file named "process.log"
• a "kfpx" file with the whole Process Plan (or Profile,

Check or Fixup) that was just executed

The contents of the "process.log" would contain information
like shown in the example below:

2016-10-25 23:38:55 Check for non-CMYK color, create a report, convert to
CMYK (ISO Coated v2) and flatten transparency
2016-10-25 23:38:55 Input /Users/olaf/TEMP-DELETE/
Adv_callas_v2_final.pdf
2016-10-25 23:38:55 Starting with step 1
2016-10-25 23:38:55 [1-1] Object uses non-CMYK color
2016-10-25 23:38:55 Result No hits
2016-10-25 23:38:55 Continuing with step 2
2016-10-25 23:38:55 [2-2] Convert color to ISO Coated v2 (ECI)
(convert spot colors to CMYK)
2016-10-25 23:39:04 Result Success

Debugging of Profiles and Process plans (9.1) How to create a detailed log when executing Process Plans (or Profiles, Checks or
Fixups)

159

New in callas pdfToolbox 9

2016-10-25 23:39:04 Modified /Users/olaf/TEMP-DELETE/
Adv_callas_v2_final - output.pdf
2016-10-25 23:39:04 Continuing with step 3
2016-10-25 23:39:04 [3-3] Flatten transparency (medium resolution)
2016-10-25 23:39:05 Result Success
2016-10-25 23:39:05 Modified /Users/olaf/TEMP-DELETE/
Adv_callas_v2_final - output.pdf
2016-10-25 23:39:05 Terminating

Sending the logging information for support
cases

When requesting support from the callas support team, you
might get asked to send the complete logging package.

This will help us to determine how processing was executed
on your computer, and why something may not be working
as expected. For easy and safe transfer please compress the
entire folder into a ZIP archive by clicking the right mouse
button after selecting the respective folder:

• Mac OS X: "Compress..."
• Windows: "Send to..." - "ZIP compressed folder"

Debugging of Profiles and Process plans (9.1) How to create a detailed log when executing Process Plans (or Profiles, Checks or
Fixups)

160

New in callas pdfToolbox 9

Processing Steps:
Overview (9.1)

Processing Steps: Overview (9.1) 161

New in callas pdfToolbox 9

Design and more
PDF documents typically are WYSIWYG: what you see is what
you get. The PDF document contains those elements that
need to be printed and it contains thus "design" elements in
a complete and accurate way. However, in many cases, addi-
tional information needs to be transmitted from the designer
to the printer as well, and that additional information often is
added to the PDF document.

Typical non-design content

It is a bit dangerous to call this additional content "non-
design". It is strictly true, because such content will not be re-
produced faithfully as is the rest of the design, but it can still
influence the final appearance of the PDF document after
print. Some examples:

• When designing non-rectangular jobs (such as labels and
packaging), a cut line needs to be defined. This cut line
indicates how the design is going to be cut to get the final
printed piece.

• When designing something that that will be printed on a
transparent material, it is often necessary to add an addi-
tional white ink layer underneath the rest of the design.
This additional white layer is usually included in the PDF
document, but it's usually included with a 'fake' (non-
white) color appearance so it's visible in the PDF docu-
ment.

• When creating complex jobs, it is often necessary to add
all kinds of additional information to the job, such as job
identity, printing and cutting marks, color patches, di-
mensions and so on. While this information is often criti-
cal to the job, it is of course not to be printed.

• Some jobs require special coatings or finishing processes;
parts of a job might need to be varnished, may have silver
or gold foils applied to them, or require embossing. These
special processes are included in the PDF document,
again with 'fake' colors to show where they will affect the
design.

Processing Steps: Overview (9.1) Design and more 162

New in callas pdfToolbox 9

Current practices

In workflows where such information is required, these spe-
cial elements are typically indicated by using spot colors. Ele-
ments using a spot color with the name "White" refer to the
additional white ink layer. Elements using the name "Var-
nish" indicate areas of the file to be varnished. Spot colors
such as "Legend" or "Registration" or "Marks" may be used
for elements that are not print content, but job identification
or assisitive printing or cutting marks.

Problems with this approach

This approach with using spot colors raises a number of
problems:

• The kind of jobs we are talking about here also typically
use a list of spot colors for design elements (elements
that do need to be printed in specific brand colors for ex-
ample). Using spot colors for both design and non-design
elements can lead to confusion.

• There is no standardisation on the spot color names
used. The spot color used to indicate a die-cut line, may
be called "Cut" or "Cutter" or "Die" or "Die-cut" or a vari-
ety of other names. On top of that, the design community
today is global; a French designer will be likely to use a
French name while a Finnish designer will use his own
language. This makes it very hard to build any kind of au-
tomation for these files as key information can be encod-
ed in a variety of different ways.

Processing Steps: Overview (9.1) Design and more 163

New in callas pdfToolbox 9

Using metadata for standardisation
Because of the challenges described in the previous article,
work of the Ghent Workgroup lead to the creation of a new
ISO standard (ISO 19593) called Processing Steps. In full the
standard is called: "Use of PDF to associate processing steps
and content data". Content data here obviously refers to the
design elements itself, what will be printed. Processing steps
refers to this additional "non-design" information stored in
the PDF document.

So how does this standard work?

Use of layers

The PDF standard has a built-in feature called "Optional Con-
tent Groups" (OCDs). This is commonly referred to as "layers"
though it's important to realise that there are important dif-
ferences between layers such as you might know them from
Adobe Photoshop or Adobe Illustrator and optional content
groups. Layers in design application typically reflect stacking
order: the objects in the front layer are "on top" of objects in
all other layers. This is not the case for optional content
groups; PDF documents can contain an optional content
group that contains all images in the document, regardless of
their stacking order. And moving an element from one op-
tional content group to another, doesn't change it's stacking
nor the visual appearance of the document.

These optional content groups are used to gather all ele-
ments belonging to a processing step. All vector elements
that form the die cut line for example, are placed in an op-
tional content group. Such optional content groups have a
name that can be used to easily identify them.

Attaching metadata to layers

Of course using optional content group names to identify
them, would bring us right back to the problem of standardi-
sation; everyone would use their own version of a name... To
solve this, the processing steps standard uses metadata at-
tached to the layer for the actual idenfication. Each layer has
two pieces of identifying metadata attached to it:

Processing Steps: Overview (9.1) Using metadata for standardisation 164

New in callas pdfToolbox 9

http://www.gwg.org

• GrGroupoup
Identifies what kind of processing step this is. Possible
groups are "Structural", "Dimensions", "Braille", "Legend",
"White", "Varnish" and "Positions".

• TTypeype
Identifies the type of processing step in that particular
group. In the group "Structural", possible types include
"Cutting", "Creasing", "Gluing" and so on.

Using spot colors in layers

Using layers and metadata associated to layers, solves the
standardisation problem for processing steps information.
However, the elements that are in such a layer still need to
have a color, and it makes the most sense to continue to use
spot colors for this.

Because of the layers though, these spot colors can be
named whatever the designer wants them to be named. As
long as the proper processing steps metadata is used, they
can be identified regardless.

Processing Steps: Overview (9.1) Using metadata for standardisation 165

New in callas pdfToolbox 9

Viewing the layers in a document
As Adobe Acrobat, pdfToolbox uses the term "Layers" to refer
to what is technically called "Optional Content Groups" in
the PDF specification. The rest of this article will use the term
layers.

Open the Layer Explorer

1. Use the "Tools" menu.
2. Click on "Explore Layers".

Processing Steps: Overview (9.1) Viewing the layers in a document 166

New in callas pdfToolbox 9

Work with the layers in the Layer Explorer

1. The Layer Explorer lists all layers present in the current
document. you can switch them on or off (make them vis-
ible or invisible) by clicking the little eye icon in front of
their name. If processing steps information is available
for a layer, it will be listed after the name of the layer.

2. The buttons under the list of layers allow adding, editing
or removing a layer.

Processing Steps: Overview (9.1) Viewing the layers in a document 167

New in callas pdfToolbox 9

Working with processing steps meta-
data for a layer
Layers can have regular metadata and processing steps
metadata attached to them.

Accessing layer metadata

1. Click the layer you want to see the metadata of.
2. Click the "edit" button to "Edit layer" dialog window.

Processing Steps: Overview (9.1) Working with processing steps metadata for a layer 168

New in callas pdfToolbox 9

Viewing processing steps metadata

The "Edit layer" dialog window contains three sections with
information about the layer:

1. The name of the layer
2. The processing steps information for the layer
3. Additional metadata associated with the layer

Look at the middle section to work with the processing steps
information. This section lists:

1. The processing steps group associated with this layer, or
"No Processing Steps Group" if no information is avail-
able for this layer.

2. The processing steps type associated with this layer, or
"No Processing Steps Type" if no information is available
for this layer.

Processing Steps: Overview (9.1) Working with processing steps metadata for a layer 169

New in callas pdfToolbox 9

Changing processing steps information

You can change the processing steps group or type by using
the pull down menus in the middle section of the "Edit layer"
dialog window.

Deleting processing steps information

Processing steps information can be removed by using the
pull down menus in the middle section of the "Edit layer" di-
alog window. Simply select the top value in both menus ("No
Processing Steps Group / Type").

Processing Steps: Overview (9.1) Working with processing steps metadata for a layer 170

New in callas pdfToolbox 9

Checking processing steps informa-
tion
Having correct processing steps information can be impor-
tant for the functioning of automatic workflows. As such,
pdfToolbox implements a number of specific processing
steps checks.

Checking for presence

This condition returns true if processing information is pre-
sent in the document, false if it is not.

Checking for conflicts

This condition can be used to find out whether the same pro-
cessing steps information is used for more than one layer. If
two layers are marked "Structural" > "Cutting" for example, it
makes it harder to figure out which of those two is the actual
die-line, and it might indicate other problems with the file or
the workflow.

Processing Steps: Overview (9.1) Checking processing steps information 171

New in callas pdfToolbox 9

Identifying layers with specific processing types

This condition is useful to identify specific processing steps
layers in a document. Multiple items can be searched for by
listing each item on a new line (as in the example above).
Each line must have one of three possible formats:

• <gr<group name>oup name>
The line contains just the name of a processing steps
group, no type is mentioned. This will create a hit for any
processing steps layer that has this specific group (re-
gardless of type).

• <gr<group name>:<type name>oup name>:<type name>
The line contains the name of a processing steps group,
followed by a colon (':'), followed by the name of a pro-
cessing steps type. This creates a hit for any layer that has
the specified group and type.

• :<type name>:<type name>
The line contains a colon (':'), followed by the name of a
processing steps type. This creates a hit for any layer that
has the specified type (regardless of group).

Processing Steps: Overview (9.1) Checking processing steps information 172

New in callas pdfToolbox 9

Identifying custom processing steps information

The processing steps standard defines a list of predefined
groups and types, but it also allows custom values to be used
when none of the predefined values can be used. This condi-
tion finds layers where such custom values are used.

Processing Steps: Overview (9.1) Checking processing steps information 173

New in callas pdfToolbox 9

Fixing processing steps data
pdfToolbox can fix a number of common problems with pro-
cessing steps information and can be used to convert legacy
files using spot color identification to processing steps.

Putting objects on a specific layer

This fixup identifies objects with a preflight check; those ob-
jects are then put on layer identified by its processing steps
group and type.

Adding processing steps information to a layer

This fixup identifies a layer by name, and then adds specific
processing steps information to it.

Processing Steps: Overview (9.1) Fixing processing steps data 174

New in callas pdfToolbox 9

Rename layer identified by processing steps
information

This fixup identifies a layer using the specified processing
steps information and changes its name.

Processing Steps: Overview (9.1) Fixing processing steps data 175

New in callas pdfToolbox 9

	Large format
	Add ink layer
	Available settings
	Create "Varnish" object for all painting content
	The result
	Inspecting the result - individual separation for spot color
	Creation on a layer

	Adding grommets
	Define the settings
	Inspecting the result
	Grommets by distance

	Tiling
	Define the settings
	Construction information
	Information for overlap
	Tiling by number

	Add borders
	Available settings
	Extend for Roll Up Banner
	Extended result PDF
	Fold outline on a layer

	Add bleed
	Mirror content as image
	Repeat last pixel as an image
	Mirror page objects

	Variables and JavaScript: JavaScript
	Taking variables to the next level
	The concept of "variables"
	Variables in the desktop, server, and command line SDK versions of pdfToolbox 9
	How powerful is the JavaScript engine in pdfToolbox 9?

	Variables and JavaScript: Variables in general
	Variables can be assigned to everything
	Assign a variable
	Variable Editor: Creating a new variable
	For Checkboxes and Pop ups you can use the info button to pick one of the possible default values
	Constraints
	Constraints - Range specifics
	Constraints for Pop up fields
	Profile Script Scope
	Variables in Processplans
	The "Ask at runtime" in pdfToolbox Desktop

	Variables using JavaScript: Overview
	Where can JavaScript variables be used
	Assigning a variable to a pdfToolbox Desktop control
	Creating or modifying a JavaScript variable
	Creating or modifying a JavaScript variable: Important differences to pdfToolbox versions earlier than version 9
	Defining a variable in a script
	Setting the value for a Script variable in it's own script
	Setting the value for another Script variable with app.vars
	Using variables that are defined elsewhere
	Profile level scripts versus Check/Fixup level scripts
	The Script editor: User interface elements: Help
	The Script editor: User interface elements: Value type
	The Script editor: User interface elements: Show evaluation results
	Inspecting the variable structure in the Ask at Runtime dialogue in pdfToolbox Desktop: Activating the "debug view"
	Inspecting the variable structure in the Ask at Runtime dialogue in pdfToolbox Desktop: The "debug view"
	Inspecting the variable structure in the Ask at Runtime dialogue in pdfToolbox Desktop: The "debug view" info button
	pdfToolbox specific JavaScript objects and methods

	Variables using JavaScript: pdfToolbox objects and methods
	Extracting information from an XML Report file via XPath (9.1)
	Using an external JSON jobticket file (9.1)
	Defining variables using app.requires with closed choice of allowed values (9.1)
	Using "trigger" values to adjust processing in a Process Plan (9.1)
	List images with lowest resolution per page (uses trigger values)
	Use trigger values to calculate the width for page mirroring for bleed creation

	Debugging JavaScript Variables (9.1)
	Console
	Serialisation of pdfToolbox JavaScript objects
	Variable values listed in a logfile created via Log Profile Execution

	Shapes
	Shapes: An overview
	Designing shapes

	Defining shapes
	Creating a Shapes fixup
	Create new fixup
	Setting up new fixup as "Create and apply shapes" fixup

	"Create shape" parameter
	Discussion of the "Create shape: parameters: MediaBox, CropBox, BleedBox, TrimBox, ArtBox
	Discussion of the "Create shape: parameters: From tracing page content
	Discussion of the "Create shape: parameters: MediaBox, CropBox, BleedBox, TrimBox, ArtBox (Copy) (Copy)
	Discussion of the "Create shape: parameters: MediaBox, CropBox, BleedBox, TrimBox, ArtBox (Copy) (Copy) (Copy)

	"Shape intent" parameter
	Discussion of the "Shape intent" parameter: Render only inside shape
	Discussion of the "Shape intent" parameter: Render only outside shape
	Discussion of the "Shape intent" parameter: Suppress rendering inside shape
	Discussion of the "Shape intent" parameter: Suppress rendering outside shape

	Additional parameters for defining shapes
	Shapes based on MediaBox, CropBox, BleedBox, TrimBox, ArtBox
	Parameters for shapes based on MediaBox, CropBox, BleedBox, TrimBox, ArtBox
	Shapes based on tracing page content (including or excluding white areas)
	Parameters for shapes based on tracing page content (including or excluding white areas)
	Shapes based on a custom defined box
	Parameters for shapes based on a custom defined box
	Shapes based on existing vector paths
	Parameters for shapes based on existing vector paths

	Applying shapes
	"Apply shapes" parameters
	"Apply shape": List of settings
	Filling shapes in front or behind existing page content
	Filling shapes in front or behind existing page content – Fill parameters
	Stroking shapes in front or behind existing page content
	Stroking shapes in front or behind existing page content - Stroke parameters
	Stroking and filling shapes at the same time in front or behind existing page content
	Stroking and filling shapes at the same time in front or behind existing page content - Stroke and fill parameters
	Use shape as clipping path for existing page content

	"Shapes" features extended in pdfToolbox 9.1
	Enlarging or reducing non-rectangular shapes
	"All-inclusive" shape: Reduce shape to outer borders

	Efficiently creating varnish or white background (requires at least v9.1)
	Sample file and pdfTo pdfolbox Library with pre-configured fixups
	Growing or shrinking a shape
	Example: Extending varnish
	Example: Shrinking white background, after reducing shape to outer border

	Spectral color and CxF
	Embed CxF data (import)
	Open Switchboard -> Prepress -> Embed CxF data
	Open a PDF/X file
	Select a folder
	The presence of CxF information in the result PDF is indicated by a CxF button at the bottom of the pdfToolbox window

	Extract and remove CxF information
	In order to extract or remove CxF information go to Switchboard -> Prepress
	Open a PDF that has CxF information attached
	Extracting CxF data
	A folder with CxF information as extracted from a PDF file
	Removing CxF data from a PDF
	The CxF indicator disappears from the pdfToolbox window

	Analyze CxF information
	Analyzing CxF information in a PDF file is easily possible...
	A windows opens that displays the CxF data for the first spot color in its XML structure
	It is also possible to run a profile that checks for various parameters of a PDF in combination with the embedded CxF information
	The CxF information profile "Find CxF issues"...

	Introduction: CxF and spectral data

	New and extended properties
	New and enhanced Properties in 9.0
	New and enhanced Properties in 9.1
	New Properties
	New Properties related to Processing Steps

	How to use the "Number of hits in the check" property (9.0)
	Only fire, if more than ... objects on a page
	Create a Fixup with a such a Check

	New and extended Fixups
	New and enhanced Fixups in pdfToolbox 9.1
	New Fixups
	Extended Fixups

	Wireframe and selective viewing
	Examining page content
	Showing the object inspector
	Object type filtering
	Object properties
	Wireframe viewing

	Advanced barcode and matrix code features
	Advanced 2D code use cases: Deutsche Post DP Matrix, Data Matrix Industry, rainbow colored QR Code (requires pdfToolbox 9.1)
	pdfToolbox Library with pre-configured example fixups
	Example: Deutsche Post DP Matrix code examples
	Example: DataMatrix Industry 2D code 16x48
	Example: Rainbow colored QR Code with your name

	Debugging of Profiles and Process plans (9.1)
	How to create a detailed log when executing Process Plans (or Profiles, Checks or Fixups)
	Activate logging
	Deactivate logging

	Execute a Process Plan (or Profile, Check or Fixup)
	Explore folder with logging information
	Structure of the files subfolders in the logging folder
	Sending the logging information for support cases

	Processing Steps: Overview (9.1)
	Design and more
	Typical non-design content
	Current practices
	Problems with this approach

	Using metadata for standardisation
	Use of layers
	Attaching metadata to layers
	Using spot colors in layers

	Viewing the layers in a document
	Open the Layer Explorer
	Work with the layers in the Layer Explorer

	Working with processing steps metadata for a layer
	Accessing layer metadata
	Viewing processing steps metadata
	Changing processing steps information
	Deleting processing steps information

	Checking processing steps information
	Checking for presence
	Checking for conflicts
	Identifying layers with specific processing types
	Identifying custom processing steps information

	Fixing processing steps data
	Putting objects on a specific layer
	Adding processing steps information to a layer
	Rename layer identified by processing steps information

